Wastewater treatment system for shrimp laboratories. Factors and parameters in the estimation of areas, times and costs
Main Article Content
Abstract
The efficient design of a wastewater treatment system can ensure the correct management of water resources used in different industries such as shrimp laboratories, also to helping to preserve the environment. The objective of this study was to present the factors and parameters that should be considered for the design of a treatment system in relation to the estimation of areas, time, and costs. The methodology used was focused on obtaining data such as the outflow of a study company, the definition of the treatment system to be designed, the determination of the machinery and concentrations to be considered for the respective analyses, also to the generalization of treatment times. Different methods were used to analyze and estimate different data and compare them with a design already made by another author. Finally, it was concluded that the estimates made help to clearly understand the factors that must be considered in the design of a system and its distribution of areas, to avoid risks and achieve sustainable wastewater disposal.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Derechos de autor
Las obras que se publican en 593 Digital Publisher CEIT están sujetas a los siguientes términos:
1.1. 593 Digital Publisher CEIT, conserva los derechos patrimoniales (copyright) de las obras publicadas, favorece y permite la reutilización de las mismas bajo la licencia Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0, por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
1.1.a. Se cite la autoría y fuente original de su publicación (revista, editorial, URL).
1.1.b. No se usen para fines comerciales u onerosos.
1.1.c. Se mencione la existencia y especificaciones de esta licencia de uso.
References
Alviano, A. R., & Andriyono, S. (2020). Wastewater Treatment on Shrimp Processing Industry. Journal of Marine and Coastal Science, 9(3), 139. https://doi.org/10.20473/jmcs.v9i3.22296
Andrade, A. M., A. Del Río, C., & Alvear, D. L. (2019). Estudio de Tiempos y Movimientos para Incrementar la Eficiencia en una Empresa de Producción de Calzado. Información Tecnológica, 30(3), 83–94. https://doi.org/10.4067/S0718-07642019000300083
Andrade-Avalos, M. L., Borja-Mayorga, D. F., & García-Veloz, M. J. (2021). Diseño y cotización de una planta de tratamiento de aguas residuales para parroquias rurales del Cantón Riobamba - Provincia de Chimborazo-Ecuador. ConcienciaDigital, 4(2), 198–214. https://doi.org/10.33262/concienciadigital.v4i2.1659
Avendaño-Delgado, E. M., Cieza-Quesquén, G. D., & Alcalá-Adrianzén, M. E. (2022). Quality Management Proposal according to industrial engineering tools to increase customer satisfaction of Manufacturas Claudinne S.A.C. Proceedings of the 20th LACCEI International Multi-Conference for Engineering, Education and Technology: “Education, Research and Leadership in Post-Pandemic Engineering: Resilient, Inclusive and Sustainable Actions.” https://doi.org/10.18687/LACCEI2022.1.1.162
Cabrera-Martínez, N. C. (2018). Test of natural coagulants extracted from Ipomoea incarnata and Moringa oleífera in the purification of industrial wastewater in Cartagena de Indias/Ensayo de coagulantes naturales extraídos de Ipomoea incarnata y Moringa olífera en la depuración de ag... Prospectiva, 16(2), 94–99. https://doi.org/10.15665/rp.v16i2.1434
González-Fragozo, H. E., Zabaleta-Solano, C., Devia-González, J., Moya-Salinas, Y., & Afanador-Rico, O. (2020). Efecto del riego con agua residual tratada sobre la calidad microbiológica del suelo y pasto King Grass. Revista U.D.C.A Actualidad & Divulgación Científica, 23(2). https://doi.org/10.31910/rudca.v23.n2.2020.1513
Hang-Pham, T. T., Cochevelou, V., Khoa-Dinh, H. D., Breider, F., & Rossi, P. (2021). Implementation of a constructed wetland for the sustainable treatment of inland shrimp farming water. Journal of Environmental Management, 279, 111782. https://doi.org/10.1016/j.jenvman.2020.111782
Iber, B. T., & Kasan, N. A. (2021). Recent advances in Shrimp aquaculture wastewater management. Heliyon, 7(11), e08283. https://doi.org/10.1016/j.heliyon.2021.e08283
Kesar, S., & Bhatti, M. S. (2022). Chlorination of secondary treated wastewater with sodium hypochlorite (NaOCl): An effective single alternate to other disinfectants. Heliyon, 8(11), e11162. https://doi.org/10.1016/j.heliyon.2022.e11162
Kosar, S., Isik, O., Cicekalan, B., Gulhan, H., Sagir Kurt, E., Atli, E., Basa, S., Ozgun, H., Koyuncu, I., van Loosdrecht, M. C. M., & Ersahin, M. E. (2022). Impact of primary sedimentation on granulation and treatment performance of municipal wastewater by aerobic granular sludge process. Journal of Environmental Management, 315, 115191. https://doi.org/10.1016/j.jenvman.2022.115191
Muñoz-Choque, A. M. (2021). Estudio de tiempos y su relación con la productividad. Revista Enfoques, 5(17), 40–54. https://doi.org/10.33996/revistaenfoques.v5i17.104
Ramos, R., & Navarro, A. (2020). Tratamiento de efluentes del cultivo de Seriola lalandi por sedimentación, filtración y absorción en diferentes tiempos de retención hidráulica. Revista de Biología Marina y Oceanografía, 54(3), 297–307. https://doi.org/10.22370/rbmo.2019.54.3.2020
Sgroi, M., Gagliano, E., Vagliasindi, F. G. A., & Roccaro, P. (2020). Absorbance and EEM fluorescence of wastewater: Effects of filters, storage conditions, and chlorination. Chemosphere, 243, 125292. https://doi.org/10.1016/j.chemosphere.2019.125292
Tang, X., Fan, C., Zeng, G., Zhong, L., Li, C., Ren, X., Song, B., & Liu, X. (2022). Phage-host interactions: The neglected part of biological wastewater treatment. Water Research, 226, 119183. https://doi.org/10.1016/j.watres.2022.119183
TULSMA. (2018). Revisión del anexo 1 del libro vi del texto unificado de legislación secundaria del ministerio del ambiente: norma de calidad ambiental y de descarga de efluentes al recurso agua. In Ministerio del Ambiente (2nd ed., pp. 24–30). https://www.ambiente.gob.ec/wp-content/uploads/downloads/2019/01/TEXTO-UNIFICADO-DE-LEGISLACION-SECUNDARIA-DE-MEDIO-AMBIENTE.pdf
Ye, T., Li, M., Lin, Y., & Su, Z. (2023). An effective biological treatment method for marine aquaculture wastewater: Combined treatment of immobilized degradation bacteria modified by chitosan-based aerogel and macroalgae (Caulerpa lentillifera). Aquaculture, 570, 739392. https://doi.org/10.1016/j.aquaculture.2023.739392