National and International Alternatives Proposed for Wastewater Treatment by the Biological Method. A Review of the Literature

Main Article Content

Víctor Manuel Matias-Pillasagua
Juan Carlos Muyulema-Allaica
Ariel Bernardo González-Bazán
Paola Martina Pucha-Medina

Abstract

One of the biggest challenges in the world is to minimize environmental contamination through wastewater. Therefore, the application of different biological methods to treat wastewater will be of great need in the future. The objective of this study was to publicize the different biological methods to treat wastewater, also demonstrate the efficiency that can be obtained by applying these methods. The methodology used to obtain information was carried out through the application of the systematic review of the literature (RSL) and the evaluation of the quality of the information (AMSTAR II), in order to obtain valid and updated information on the biological treatment methods for wastewater. An analysis was carried out on the different percentages obtained in the biological treatments shown, likewise, the limitations of the investigation were briefly presented. Finally, it was possible to conclude that biological wastewater treatments show high rates of elimination and degradation of the existing components in the applied effluents

Downloads

Download data is not yet available.

Article Details

How to Cite
Matias-Pillasagua, V. ., Muyulema-Allaica, J. ., González-Bazán, A. ., & Pucha-Medina, P. . (2023). National and International Alternatives Proposed for Wastewater Treatment by the Biological Method. A Review of the Literature . 593 Digital Publisher CEIT, 8(5), 874-885. https://doi.org/10.33386/593dp.2023.5.2065
Section
Investigaciones /estudios empíricos
Author Biographies

Víctor Manuel Matias-Pillasagua, Universidad Estatal Península de Santa Elena - Ecuador

https://orcid.org/0000-0002-9877-5984

Industrial Engineer graduated from the University of Guayaquil. Master's Degree in Educational Management and Higher Diploma in Educational Management and Planning. University Professor with 23 years of experience. Interested in research lines in the field of university education, financial mathematics, statistics and environmental sustainability. Author and co-author of several scientific articles indexed at regional and global level.

Juan Carlos Muyulema-Allaica, Universidad Estatal Península de Santa Elena / Centro de Investigación e Innovación de Ingeniería Industrial - Ecuador

https://orcid.org/0000-0002-9663-8935

Currently Research Professor at the Faculty of Engineering Sciences of the State University Santa Elena Peninsula; Professor at Postgraduate level at PUCESM, UPSE, UCE and UISEK; Accredited Researcher by Senescyt (REG-INV-19-03841); Engineering and Business Projects Manager of CAAPTES Group-Ecuador Group. Doctor in Industrial Engineering: Industrial Design and Production Technologies, Master in Industrial Engineering, mention Planning and Control of Production and Services, Master in Business Management Based on Quantitative Methods, Industrial Engineer and Commercial Engineer. Dedicated from the business sector to contribute to the strengthening of the innovation ecosystem through research work. 

Ariel Bernardo González-Bazán, Universidad Estatal Península de Santa Elena - Ecuador

https://orcid.org/0009-0004-6742-9650

Industrial Engineer graduated from the School of Engineering Sciences of the State University Santa Elena Peninsula. Committed at a personal and professional level with academic excellence for research and technological advancement at provincial and national level. Interested in research related to industrial sustainability that prioritizes different and effective ways of working based on wastewater treatment with an engineering, renewable and innovative approach.

Paola Martina Pucha-Medina, Universidad Del Pacífico – Ecuador

https://orcid.org/0000-0002-4712-7661

Currently Research Professor at the School of Business and Economics of Universidad del Pacífico. Financial Management Manager of the Business Consulting Group CAAPTES-Ecuador; Accredited Researcher by Senescyt (REG-INV-20-04346). Doctor in Legal and Business Sciences, Master in Business Management Based on Quantitative Methods, Engineer in Finance. Dedicated from the business sector to contribute to the strengthening of the innovation ecosystem through work in national and international multidisciplinary teams. Additionally, she contributes in R+D+I processes, researching in lines related to Value and Risk Calculations in Investments; Quantitative Methods for Decision Making; Economics in Productive Sectors; among other areas, such as Corporate Social Responsibility (CSR) and Sustainable Finance

References

​​Alviano, A. R., & Andriyono, S. (2020). Wastewater Treatment on Shrimp Processing Industry. Journal of Marine and Coastal Science, 9(3), 139. https://doi.org/10.20473/jmcs.v9i3.22296

​Cabrera, M., Montenegro, L., & Jiménez, A. (2022). Análisis de un Sistema de Tratamiento de Aguas Residuales de una Industria de Embutidos. Revista Politécnica, 49(2), 47–54. https://doi.org/10.33333/rp.vol49n2.05

​Cai, Y.-H., Galili, N., Gelman, Y., Herzberg, M., & Gilron, J. (2021). Evaluating the impact of pretreatment processes on fouling of reverse osmosis membrane by secondary wastewater. Journal of Membrane Science, 623, 119054. https://doi.org/10.1016/j.memsci.2021.119054

​Carrizo, D., & Moller, C. (2018). Estructuras metodológicas de revisiones sistemáticas de literatura en Ingeniería de Software: un estudio de mapeo sistemático. Ingeniare. Revista Chilena de Ingeniería, 26, 45–54. https://doi.org/10.4067/S0718-33052018000500045

​Chen, H., Chen, Z., Zhou, S., Chen, Y., & Wang, X. (2023). Efficient partial nitritation performance of real printed circuit board tail wastewater by a zeolite biological fixed bed reactor. Journal of Water Process Engineering, 53, 103607. https://doi.org/10.1016/j.jwpe.2023.103607

​Chen, Y., Lin, M., & Zhuang, D. (2022). Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere, 297, 133932. https://doi.org/10.1016/j.chemosphere.2022.133932

​Ciapponi, A. (2018). AMSTAR-2: herramienta de evaluación crítica de revisiones sistemáticas de estudios de intervenciones de salud. Evidencia, Actualizacion En La Práctica Ambulatoria, 21(1). https://doi.org/https://doi.org/10.51987/evidencia.v21i1.6834

​del Angel, E., Pantoja, M. A., López, R., & Cruz, A. E. (2022). Treatment of domestic wastewater using activated carbon prepared from sugarcane bagasse. Tecnología y Ciencias Del Agua, 13(1), 144–183. https://doi.org/10.24850/j-tyca-2022-01-04

​Dong, G., Chen, B., Liu, B., Cao, Y., de Jourdan, B., Stoyanov, S. R., Ling, J., Ye, X., Lee, K., & Zhang, B. (2022). Comparison of O3, UV/O3, and UV/O3/PS processes for marine oily wastewater treatment: Degradation performance, toxicity evaluation, and flocs analysis. Water Research, 226, 119234. https://doi.org/10.1016/j.watres.2022.119234

​González Fragozo, H. E., Zabaleta Solano, C., Devia González, J., Moya Salinas, Y., & Afanador Rico, O. (2020). Efecto del riego con agua residual tratada sobre la calidad microbiológica del suelo y pasto King Grass. Revista U.D.C.A Actualidad & Divulgación Científica, 23(2). https://doi.org/10.31910/rudca.v23.n2.2020.1513

​Hamatani, Y., Watari, T., Hatamoto, M., Yamaguchi, T., Setiadi, T., & Konda, T. (2023). Greenhouse gas reduction of co-benefit-type wastewater treatment system for fish-processing industry: A real-scale case study in Indonesia. Water Science and Engineering. https://doi.org/10.1016/j.wse.2023.03.001

​Hang Pham, T. T., Cochevelou, V., Khoa Dinh, H. D., Breider, F., & Rossi, P. (2021). Implementation of a constructed wetland for the sustainable treatment of inland shrimp farming water. Journal of Environmental Management, 279, 111782. https://doi.org/10.1016/j.jenvman.2020.111782

​Iturralde Jácome, X. A., & Hernández Escobar, A. A. (2022). Biofiltración de aguas residuales de industrias arroceras de San Jacinto de Yaguachi, Ecuador mediante cascarilla de arroz. Revista Iberoamericana Ambiente & Sustentabilidad, 5, e271. https://doi.org/10.46380/rias.vol5.e271

​Muloiwa, M., Dinka, M., & Nyende-Byakika, S. (2022). Modelling the biological treatment process aeration efficiency: application of the artificial neural network algorithm. Water Science and Technology, 86(11), 2912–2927. https://doi.org/10.2166/wst.2022.388

​Pérez, Y. A., García Cortés, D. A., & Jauregui Haza, U. J. (2022). Humedales construidos como alternativa de tratamiento de aguas residuales en zonas urbanas: una revisión. Ecosistemas, 31(1), 2279. https://doi.org/10.7818/ECOS.2279

​Pizarro, A. B., Carvajal, S., & Buitrago-López, A. (2020a). Assessing the methodological quality of systematic reviews using the AMSTAR tool. Colombian Journal of Anesthesiology. https://doi.org/10.5554/22562087.e913

​Pizarro, A. B., Carvajal, S., & Buitrago-López, A. (2020b). Assessing the methodological quality of systematic reviews using the AMSTAR tool. Colombian Journal of Anesthesiology. https://doi.org/10.5554/22562087.e913

​Raj, S., Singh, H., & Bhattacharya, J. (2023). Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: Process studies in an industrial ecology concept. Science of The Total Environment, 857, 159464. https://doi.org/10.1016/j.scitotenv.2022.159464

​Ramos, R., & Navarro, A. (2020). Tratamiento de efluentes del cultivo de Seriola lalandi por sedimentación, filtración y absorción en diferentes tiempos de retención hidráulica. Revista de Biología Marina y Oceanografía, 54(3), 297–307. https://doi.org/10.22370/rbmo.2019.54.3.2020

​Roque, F., Delgado, D., Chirinos, B., Huanca, R., Alvarez, E., & Medina, R. (2021). Diseño Sostenible De Un Módulo Innovador De Tratamiento Biológico De Aguas Residuales En Comunidades Rurales Andinas Vulnerables Utilizando Nostoc Commune Caso: Coporaque-Caylloma (Perú). Proceedings of the 19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and Trends in Technology and Skills for Sustainable Social Development” “Leveraging Emerging Technologies to Construct the Future.” https://doi.org/10.18687/LACCEI2021.1.1.582

​Sgroi, M., Gagliano, E., Vagliasindi, F. G. A., & Roccaro, P. (2020). Absorbance and EEM fluorescence of wastewater: Effects of filters, storage conditions, and chlorination. Chemosphere, 243, 125292. https://doi.org/10.1016/j.chemosphere.2019.125292

​Shabanizadeh, H., & Taghavijeloudar, M. (2023). A sustainable approach for industrial wastewater treatment using pomegranate seeds in flocculation-coagulation process: Optimization of COD and turbidity removal by response surface methodology (RSM). Journal of Water Process Engineering, 53, 103651. https://doi.org/10.1016/j.jwpe.2023.103651

​Shea, B. J., Reeves, B. C., Wells, G., Thuku, M., Hamel, C., Moran, J., Moher, D., Tugwell, P., Welch, V., Kristjansson, E., & Henry, D. A. (2017). AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ, j4008. https://doi.org/10.1136/bmj.j4008

​Shende, A. P., & Chidambaram, R. (2023). Cocoyam powder extracted from Colocasia antiquorum as a novel plant-based bioflocculant for industrial wastewater treatment: Flocculation performance and mechanism. Heliyon, 9(4), e15228. https://doi.org/10.1016/j.heliyon.2023.e15228

​Tang, X., Fan, C., Zeng, G., Zhong, L., Li, C., Ren, X., Song, B., & Liu, X. (2022). Phage-host interactions: The neglected part of biological wastewater treatment. Water Research, 226, 119183. https://doi.org/10.1016/j.watres.2022.119183

​Waqas, S., Harun, N. Y., Bilad, M. R., Samsuri, T., Nordin, N. A. H. M., Shamsuddin, N., Nandiyanto, A. B. D., Huda, N., & Roslan, J. (2022). Response Surface Methodology for Optimization of Rotating Biological Contactor Combined with External Membrane Filtration for Wastewater Treatment. Membranes, 12(3), 271. https://doi.org/10.3390/membranes12030271

​Xie, J., Zou, X., Chang, Y., Xie, J., Liu, H., Cui, M., Zhang, T. C., & Chen, C. (2023). The microbial synergy and response mechanisms of hydrolysis-acidification combined microbial electrolysis cell system with stainless-steel cathode for textile-dyeing wastewater treatment. Science of The Total Environment, 855, 158912. https://doi.org/10.1016/j.scitotenv.2022.158912

​Ye, T., Li, M., Lin, Y., & Su, Z. (2023). An effective biological treatment method for marine aquaculture wastewater: Combined treatment of immobilized degradation bacteria modified by chitosan-based aerogel and macroalgae (Caulerpa lentillifera). Aquaculture, 570, 739392. https://doi.org/10.1016/j.aquaculture.2023.739392

​Zhang, C., Yang, X., Dai, J., Liu, W., Yang, H., & Bai, Z. (2023). Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic. Chinese Journal of Chemical Engineering, 58, 137–145. https://doi.org/10.1016/j.cjche.2022.11.003

​Zhang, Y., Li, M., Zhang, G., Liu, W., Xu, J., Tian, Y., Wang, Y., Xie, X., Peng, Z., Li, A., Zhang, R., Wu, D., & Xie, X. (2023). Efficient treatment of the starch wastewater by enhanced flocculation–coagulation of environmentally benign materials. Separation and Purification Technology, 307, 122788. https://doi.org/10.1016/j.seppur.2022.122788

Most read articles by the same author(s)