A systematic review of studies on method engineering and the production chain
Main Article Content
Abstract
Methods engineering has become one of the most fundamental and important in the study of work for the continuous improvement of production lines. The objective of the study is to discuss the current state of the art of method engineering and the production chain under the PRISMA methodology. The registration of the protocol of systematic review of the current academic literature in this emerging field, allowed to establish the gaps of future research. The review was carried out by identifying relevant academic articles from leading journals using Scopus, Web of Science, ScienceDirect, Google Scholar and Dialnet databases by using filters and keywords such as "methods engineering", "methods engineering", "method study", "production chain", "production line" and "production line", only engineering and journal articles were taken into consideration. The search filter effect yielded articles that were available, but only 26 articles met the prerequisites. It is concluded that the invention of the study revealed how the different tools, techniques and instruments of methods engineering and the production line have an effect on the improvement of a company's productivity. Therefore, the countries that met the research disclosure requirements were China, Ecuador, Argentina, Brazil and Mexico.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Derechos de autor
Las obras que se publican en 593 Digital Publisher CEIT están sujetas a los siguientes términos:
1.1. 593 Digital Publisher CEIT, conserva los derechos patrimoniales (copyright) de las obras publicadas, favorece y permite la reutilización de las mismas bajo la licencia Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0, por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
1.1.a. Se cite la autoría y fuente original de su publicación (revista, editorial, URL).
1.1.b. No se usen para fines comerciales u onerosos.
1.1.c. Se mencione la existencia y especificaciones de esta licencia de uso.
References
Al-Janahi, R., Hung-Da, W., Lee, Y., & Zarreh, A. (2020). Effectiveness and fitness of production line to meet customers’ demand. Procedia Manufacturing, 51(2019), 1348–1354. https://doi.org/10.1016/j.promfg.2020.10.188
Ameen, W., AlKahtani, M., Mohammed, M. K., Abdulhameed, O., & El-Tamimi, A. M. (2018). Investigation of the effect of buffer storage capacity and repair rate on production line efficiency. Journal of King Saud University - Engineering Sciences, 30(3), 243–249. https://doi.org/10.1016/j.jksues.2018.03.001
Andreo-Martínez, P., Ortiz-Martínez, V. M., Salar-García, M. J., Veiga-del-Baño, J. M., Chica, A., & Quesada-Medina, J. (2022). Waste animal fats as feedstock for biodiesel production using non-catalytic supercritical alcohol transesteri fi cation: A perspective by the PRISMA methodology. Energy for Sustainable Development, 69, 150–163. https://doi.org/10.1016/j.esd.2022.06.004
Arroussi, C., Mouna, A., Meliani, M. H., & Pluvinage, G. (2022). Proposal Engineering Methods to Repair/Replace Bend Elbow Pipe Contain Internal Corrosion Defect. Procedia Structural Integrity, 41, 752–758. https://doi.org/10.1016/j.prostr.2022.05.087
Azevedo, J., Sá, J. C., Ferreira, L. P., Santos, G., Cruz, F. M., Jimenez, G., & Silva, F. J. G. (2019). Improvement of production line in the automotive industry through lean philosophy. Procedia Manufacturing, 41, 1023–1030. https://doi.org/10.1016/j.promfg.2019.10.029
Bechert, S., Sonntag, D., Aldinger, L., & Knippers, J. (2021). Integrative structural design and engineering methods for segmented timber shells - BUGA Wood Pavilion. Structures, 34(September), 4814–4833. https://doi.org/10.1016/j.istruc.2021.10.032
Bokrantz, J., Skoogh, A., & Ylipää, T. (2016). The Use of Engineering Tools and Methods in Maintenance Organisations: Mapping the Current State in the Manufacturing Industry. Procedia CIRP, 57, 556–561. https://doi.org/10.1016/j.procir.2016.11.096
Braun, D., Biesinger, F., Jazdi, N., & Weyrich, M. (2020). A concept for the automated layout generation of an existing production line within the digital twin. Procedia CIRP, 97, 302–307. https://doi.org/10.1016/j.procir.2020.05.242
Bravo-Arroyo, K. L., Menéndez-Dávila, J., & Peñaherrera-Larenas, F. (2018). Importancia de los estudios de tiempos en el proceso de comercialización de las empresas. Observatorio de La Economía Latinoamericana., 14.
Chiò, E., Alfieri, A., & Pastore, E. (2021). Change-point visualization and variation analysis in a simple production line: A process mining application in manufacturing. Procedia CIRP, 99, 573–579. https://doi.org/10.1016/j.procir.2021.03.122
Chor, D., Manova, K., & Yu, Z. (2021). Growing like China: Firm performance and global production line position. Journal of International Economics, 130, 103445. https://doi.org/10.1016/j.jinteco.2021.103445
Cuevas-Arteaga, C., González-Montenegro, Y. Á., Torres-Salazar, M. del C., & Valladares-Cisneros, M. G. (2020). Importancia de un estudio de tiempos y movimientos. Inventio, 16(39). https://doi.org/10.30973/inventio/2020.16.39/7
Dos-Reis, M. D. O., Godina, R., Pimentel, C., Silva, F. J. G., & Matias, J. C. O. (2019). A TPM strategy implementation in an automotive production line through loss reduction. Procedia Manufacturing, 38(2019), 908–915. https://doi.org/10.1016/j.promfg.2020.01.173
Fragoso, A., Martins, R. F., & Soares, A. C. (2021). Failure Analysis of a Double-Cyclone located in a Cement Production Line. Procedia Structural Integrity, 37(C), 533–539. https://doi.org/10.1016/j.prostr.2022.01.119
García-Briones, A. R., Pico-Pico, B. F., & Jaimez, R. E. (2021). La cadena de producción del Cacao en Ecuador: Resiliencia en los diferentes actores de la producción. Novasinergia Revista Digital De Ciencia, Ingeniería Y Tecnología, 4(2), 152–172. https://doi.org/10.37135/ns.01.08.10
Gómez-Gómez, I., & Brito-Aguilar, J. G. (2020). Administración de Operaciones. In Universidad Internacional del Ecuador (Vol. 1).
Guzmán-Sánchez, E. E., Rodríguez-Realyvazquez, J. R., Molina-Gardea, C. J., & Cortes-Carrillo, F. (2018). Solución de problemas mediante la aplicación de las etapas de ingeniería de métodos. 2(6), 23–33.
Hu, S., Dong, Z. S., & Lev, B. (2022). Supplier selection in disaster operations management: Review and research gap identification. Socio-Economic Planning Sciences, 82(PB), 101302. https://doi.org/10.1016/j.seps.2022.101302
Kumar, V., Pallathadka, H., Kumar Sharma, S., Thakar, C. M., Singh, M., & Kirana Pallathadka, L. (2022). Role of machine learning in green supply chain management and operations management. Materials Today: Proceedings, 51, 2485–2489. https://doi.org/10.1016/j.matpr.2021.11.625
Lopes, R., Silva, F. J. G., Godina, R., Campilho, R., Dieguez, T., Ferreira, L. P., & Baptista, A. (2020). Reducing scrap and improving an air conditioning pipe production line. Procedia Manufacturing, 51(2020), 1410–1415. https://doi.org/10.1016/j.promfg.2020.10.196
Ma, Y., Li, L., Yin, Z., Chai, A., Li, M., & Bi, Z. (2021). Research and application of network status prediction based on BP neural network for intelligent production line. Procedia Computer Science, 183(2018), 189–196. https://doi.org/10.1016/j.procs.2021.02.049
Montoya-Reyes, M., González-Angeles, A., Mendoza-Muñoz, I., Gil-Samaniego-Ramos, M., & Ling-López, J. (2020). Method engineering to increase labor productivity and eliminate downtime. Journal of Industrial Engineering and Management, 13(2), 321–331. https://doi.org/10.3926/jiem.3047
Mourtzis, D., Tsakalos, D., Xanthi, F., & Zogopoulos, V. (2019). Optimization of highly automated production line: An advanced engineering educational approach. Procedia Manufacturing, 31, 45–51. https://doi.org/10.1016/j.promfg.2019.03.008
Muyulema-Allaica, J. C., & Ruiz-Puente, C. (2022). Framework proposal for the design of lean circular production systems based on case studies. DYNA, Dyna Acele(0), 1–10. https://doi.org/https://doi.org/10.6036/10540
Muyulema-Allaica, J. C., Usca-Veloz, R. B., Gavidia-García, J. L., & Pucha-Medina, P. M. (2021). Enseñanza virtual de la investigación de operaciones durante la COVID-19. Un análisis desde la práctica docente universitaria. Horizontes. Revista de Investigación En Ciencias de La Educación, 5(19), 677–694. https://doi.org/10.33996/revistahorizontes.v5i19.229
Padovano, A., Longo, F., Nicoletti, L., Gazzaneo, L., Chiurco, A., & Talarico, S. (2021). A prescriptive maintenance system for intelligent production planning and control in a smart cyber-physical production line. Procedia CIRP, 104, 1819–1824. https://doi.org/10.1016/j.procir.2021.11.307
Ramos, C., Barreto, R., Mota, B., Gomes, L., Faria, P., & Vale, Z. (2020). Scheduling of a textile production line integrating PV generation using a genetic algorithm. Energy Reports, 6, 148–154. https://doi.org/10.1016/j.egyr.2020.11.093
Ribeiro, I. M., Godina, R., Pimentel, C., Silva, F. J. G., & Matias, J. C. O. (2019). Implementing TPM supported by 5S to improve the availability of an automotive production line. Procedia Manufacturing, 38(2019), 1574–1581. https://doi.org/10.1016/j.promfg.2020.01.128
Rymaszewski, S., Watróbski, J., & Karczmarczyk, A. (2020). Identification of reference multi criteria domain model Production line optimization case study. Procedia Computer Science, 176, 3794–3801. https://doi.org/10.1016/j.procs.2020.09.008
Usca-Veloz, R. B., Muyulema-Allaica, J. C., Espinosa-Ruiz, C. G., Sánchez-Macías, R. A., Velasteguí-Bósquez, G. A., & Caspi-Pilamunga, W. M. (2019). La interconexión digital de objetos habituales con Internet y sus aplicaciones para la empresa y la Industria 4.0: Review. RIIIT. Revista Internacional de Investigación e Innovación Tecnológica, 7(41), 1–19.
Vides-Polanco, E. X., Díaz-Jiménez, L. A., & Gutiérrez Rodríguez, J. J. (2018). Análisis metodológico para la realización de estudios de métodos y tiempos Methodological analysis for the performance of studies of methods and times. Universidad Simón Bolivar, 8(1), 3–10.
Watróbski, J., Karczmarczyk, A., & Rymaszewski, S. (2020). Multi-criteria decision making approach to production line optimization. Procedia Computer Science, 176, 3820–3830. https://doi.org/10.1016/j.procs.2020.09.005
Yang, Z., Nan, L., & Shum-Cheung, H. (2021). A versatile flow-profile engineering method in the stokes flow regime for complex-shaped flows. Engineering, 7(5), 655–662. https://doi.org/10.1016/j.eng.2021.02.008
Yepes-Nuñez, J. J., Urrútia, G., Romero-García, M., & Alonso-Fernández, S. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Revista Espanola de Cardiologia, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016