Inteligencia artificial en la educación: Explorando los beneficios y riesgos potenciales

Contenido principal del artículo

Mario Fabricio Ayala-Pazmiño

Resumen

La inteligencia artificial (IA) tiene el potencial de transformar la educación al mejorar los resultados de la enseñanza y el aprendizaje. Sin embargo, como con cualquier nueva tecnología, también existen riesgos asociados con su uso. Este documento explora los beneficios y riesgos potenciales de la IA en la educación, incluido el aprendizaje personalizado, la evaluación mejorada, la reducción del tiempo de planificación para los maestros, y el riesgo de hacer trampa. Basándose en una variedad de estudios y perspectivas, el documento argumenta que, si bien existen ciertos riesgos asociados con la IA, los beneficios que ofrece a la educación son significativos. El documento concluye sugiriendo la necesidad de más investigación empírica sobre el impacto de la IA en la educación y la importancia de preparar a los estudiantes para un futuro en el que las máquinas desempeñarán un papel de liderazgo.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Ayala-Pazmiño , M. (2023). Inteligencia artificial en la educación: Explorando los beneficios y riesgos potenciales. 593 Digital Publisher CEIT, 8(3), 892-899. https://doi.org/10.33386/593dp.2023.3.1827
Sección
Educación
Biografía del autor/a

Mario Fabricio Ayala-Pazmiño , Universidad del Pacífico - Ecuador

http://orcid.org/0000-0002-3344-8931

Dr. Ayala has Computer Science, Business Administration, and Education Sciences degrees. He received his Ph.D. in Education from the University of Melbourne in Australia, in 2018, with his highest concentration in foreign language teaching and learning, pedagogy, educational management, and higher education. He is an educator and has experience as an Academic Coordinator. His previous experience includes working as head of Humanities and Community and Service departments. In addition, he was a professor at Monash University in Melbourne, Australia, Universidad de las Americas in Quito, and Universidad de Guayaquil. Dr. Ayala is a Monash University Hispanic Studies Teachers Association, Australia member. 

Citas

Baker, R., & Siemens, G. (2014). Educational data mining and learning analytics. Handbook of educational psychology, 2, 507-524.

Brackett, M. A., Rivers, S. E., Reyes, M. R., & Salovey, P. (2019). Enhancing educational opportunities by integrating social–emotional learning (SEL) into education policy and practice. Educational Psychologist, 54(4), 274-293. doi: 10.1080/00461520.2019.1632057

Gee, J. P. (2018). What video games have to teach us about learning and literacy. Palgrave Macmillan.

Hattie, J. (2012). Visible learning for teachers: Maximizing impact on learning. Routledge.

Kavale, K. A., & Forness, S. R. (2019). Cheating and plagiarism in schools and colleges. Psychology Press.

Kelleher, C., & Tierney, B. (2018). Artificial intelligence in education: Applications and prospects. AI Magazine, 39(3), 45-49.

Kim, J., Park, H., Jo, I., & Choi, H. (2019). Designing augmented reality simulation for science education: Affordances and constraints. Education Sciences, 9(4), 318.

Kulkarni, C., Cambre, J., Kotturi, Y., Bernstein, M. S., & Klemmer, S. R. (2015). Peer and self assessment in massive online classes. ACM Transactions on Computer-Human Interaction (TOCHI), 22(2), 1-30.

Liao, Y., Huang, R., Sun, C., & Li, X. (2021). Artificial intelligence in education: Opportunities and challenges from a learning science perspective. Frontiers in Education, 6, 1-7.

López-Pérez, M.V., Pérez-Rodríguez, M.A., & Gutiérrez-Santiuste, E. (2020). Artificial intelligence in education: A review. Frontiers in Psychology, 11, 135. doi: 10.3389/fpsyg.2020.00135

Mandernach, B. J. (2018). Effective grading practices in the online classroom: A faculty perspective. Journal of Educators Online, 15(1), 1-22.

Mather, R., & Yau, J. Y. (2019). Artificial intelligence education: Implications for teaching and learning. Educational Research Review, 27, 233-247. https://doi.org/10.1016/j.edurev.2019.03.003

National Education Association. (2020). Preparing educators for AI. https://www.nea.org/resource-library/preparing-educators-ai

Pardo-Ballester, C., Tomás, D., & López-López, M. C. (2021). Exploring the potential of chatbots in foreign language learning: a systematic review. Computer Assisted Language Learning, 34(2), 153-182.

Pellegrino, J. W., & Hilton, M. L. (2013). Education for life and work: Developing transferable knowledge and skills in the 21st century. National Academies Press.

Roorda, D. L., Koomen, H. M. Y., Spilt, J. L., & Oort, F. J. (2011). The influence of affective teacher–student relationships on students' school engagement and achievement: A meta-analytic approach. Review of Educational Research, 81(4), 493-529. https://doi.org/10.3102/0034654311421793

Sclater, N., & Peasgood, A. (2018). Artificial intelligence in education: Promises and implications for teaching and learning. British Journal of Educational Technology, 49(4), 745-760. doi: 10.1111/bjet.12638

Sulik, M. J., Huerta, M., & Ziegler, J. C. (2017). The development of handwriting speed and legibility in grades 1-9. Journal of educational psychology, 109(6), 800-813.

World Economic Forum. (2018). The Future of Jobs Report 2018. Retrieved from https://www.weforum.org/reports/the-future-of-jobs-report-2018.

Artículos más leídos del mismo autor/a

1 2 > >>