Analysis of customer experience in e-commerce using business intelligence
Main Article Content
Abstract
This study analyzes the impact of business intelligence (BI) on customer experience in e-commerce. Three objectives were evaluated: the impact of real-time data analysis on the personalization of the shopping experience, how BI can improve proactive problem resolution in customer service, and the influence of data integration on optimization and consistency of customer experience. Descriptive analyses, multiple regression, ANOVA, hypothesis testing and cluster analysis were performed on a sample of 150 e-commerce companies. The results indicate that ad personalization, facilitated by real-time data analysis, has a significant but negative impact on customer satisfaction and loyalty.
The qualitative analysis through interviews highlighted those BI tools allow for faster and more effective problem resolution. Data integration showed a trend to improve conversion rate and customer loyalty, although no statistically significant results were found. The cluster analysis identified four groups of companies with distinctive characteristics in terms of BI implementation and its impacts on customer experience. Companies with greater adoption of real-time data analytics and ad personalization showed challenges in customer satisfaction, while those with better data integration tended to have better conversion rates
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Derechos de autor
Las obras que se publican en 593 Digital Publisher CEIT están sujetas a los siguientes términos:
1.1. 593 Digital Publisher CEIT, conserva los derechos patrimoniales (copyright) de las obras publicadas, favorece y permite la reutilización de las mismas bajo la licencia Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0, por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
1.1.a. Se cite la autoría y fuente original de su publicación (revista, editorial, URL).
1.1.b. No se usen para fines comerciales u onerosos.
1.1.c. Se mencione la existencia y especificaciones de esta licencia de uso.
References
Chaffey, D., & Smith, P. R. (2017). Digital Marketing Excellence: Planning, Optimizing and Integrating Online Marketing. Routledge.
Chen, H., Chiang, R. H., & Storey, V. C. (2018). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165-1188. doi:https://doi.org/10.25300/MISQ/2018/36.4.03
Chung, J., Kim, H., & Lee, S. (2021). Automated Color Correction in Film Production: Techniques and Applications. . Journal of Visual Computing, 37(4), 501-512.
Gadiparthi, S. (2024). Enhancing customer experience with business intelligence: strategies, tools, and case studies. International Journal of Management (IJM), 15(2), 108-116. doi:https://doi.org/10.17605/OSF.IO/9UTGE
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Grewal, D., Roggeveen, A. L., & Nordfält, J. (2017). The Future of Retailing. Journal of Retailing, 93(1), 1-6. doi:https://doi.org/10.1016/j.jretai.2016.12.008
Hagbi, N., & Gutfreund, R. (2020). Enhancing Video Editing with Machine Learning. Journal of Applied AI, 15(2), 215-229.
Hernández, B., Jiménez, J., & Martín, M. J. (2010). Customer behavior in electronic commerce: The moderating effect of e-purchasing experience. Journal of Business Research, 63(9-10), 964-971. doi:https://doi.org/10.1016/j.jbusres.2009.01.019
Iakupova, R. (2024). AI Trends for e-Commerce. Věda a perspektivy, 6(37), 10-19. doi:https://doi.org/10.52058/2695-1592-2024-6(37)-10-19
Karras, T., & Laine, S. A. (2020). A Style-Based Generator Architecture for Generative Adversarial Networks . IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12), 3135-3144.
Kavitha, L. (2023). Copyright Challenges in the Artificial Intelligence Revolution: Transforming the Film Industry from Script to Screen. ACS Publisher, 4(1), 1-8. doi:https://dx.doi.org/10.48165/tlr.2024.4.1.1
Kumar, V., Bhattacharya, S., & Luo, X. (2021). Customer Relationship Management in a Big Data World. Journal of Business Research, 70, 380-389. doi:https://doi.org/10.1016/j.jbusres.2016.08.009
Lemon, K. N., & Verhoef, P. C. (2016). Understanding Customer Experience Throughout the Customer Journey. Journal of Marketing, 80(6), 69-96. doi:https://doi.org/10.1509/jm.15.0420
Li, H.-J., Bu, Z., Wang, Z., & Cao, J. (2020). Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion. EEE Transactions on Industrial Informatics, 16(8), 5327-5334. doi:10.1109/TII.2019.2960835
Oskooei, A. R., & Adak, T. E. (2023). Advancing E-Commerce Analytics The Development of Intelligent Analytics Software for Enhanced Customer Experience. Orclever Proceedings of Research and Development, 3(1), 178–187. doi:https://doi.org/10.56038/oprd.v3i1.312
Reddy, V. M., & Nalla, L. N. (2021). Harnessing Big Data for Personalization in E-commerce Marketing Strategies. Revista Espanola De Documentacion Cientifica, 15(4), 108–125. doi:https://redc.revistas-csic.com/index.php/Jorunal/article/view/224
Reddy, V. M., & Nalla, L. N. (2023). Leveraging Big Data Analytics to Enhance Customer Experience in E-commerce. Revista Espanola De Documentacion Cientifica, 18(2), 295–324. doi:https://redc.revistas-csic.com/index.php/Jorunal/article/view/221
Sharma, R., Mithas, S., & Kankanhalli, A. (2019). Transforming Decision-Making Processes: A Research Agenda for Understanding the Impact of Business Analytics on Organizations. European Journal of Information Systems, 23(4), 433-441. doi:https://doi.org/10.1057/ejis.2014.17
Thompson, S. (2020). The Future of Video Production: AI and Automation. Media Innovation Journal, 9(3), 150-162.
Verhoef, P. C., Kannan, P. K., & Inman, J. J. (2015). From Multi-Channel Retailing to Omni-Channel Retailing: Introduction to the Special Issue on Multi-Channel Retailing . Journal of Retailing, 91(2), 174-181. doi:https://doi.org/10.1016/j.jretai.2015.02.005
Watson, H. J. (2018). All About Analytics Trends. Business Intelligence Journl, 23(2), 4-7.
Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 806(6), 97-121. doi:https://doi.org/10.1509/jm.15.0413
West, J. (2021). Visual Effects in The Mandalorian: A Case Study. VFX Today, 23(1), 45-57.
Zhao, X. (2019). A Study on E-commerce Recommender System Based on Big Data. 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). Chengdu, China: IEEE . doi:10.1109/ICCCBDA.2019.8725694.