Avocado (Persea americana) volume estimation using mathematical profiling with arduino uno and ultrasonic sensor
Main Article Content
Abstract
The volume of avocado (Persea americana) was estimated using mathematical profiling and water displacement methods. In the mathematical profiling, digital images were used and modeled using polynomial functions in Geogebra software, obtaining an average function that was implemented in an Arduino Uno card, where the volume of the fruit is obtained as a function of its length, measured by an HCSR04 ultrasonic sensor. The estimated volume was compared with that obtained by water displacement, based on Archimedes' physical principle. The statistical t-test for paired samples and the Bland-Altman analysis were applied, finding that there were no statistically significant differences between methods (P > 0.05), with an average difference of 5.28 cm³ (95% CI: -2.78 cm³ a 13.33 cm³). Mathematical profiling, together with its implementation on Arduino Uno, provides a fast, inexpensive and portable solution to estimate the volume of avocados, applicable in agricultural environments.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Derechos de autor
Las obras que se publican en 593 Digital Publisher CEIT están sujetas a los siguientes términos:
1.1. 593 Digital Publisher CEIT, conserva los derechos patrimoniales (copyright) de las obras publicadas, favorece y permite la reutilización de las mismas bajo la licencia Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0, por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
1.1.a. Se cite la autoría y fuente original de su publicación (revista, editorial, URL).
1.1.b. No se usen para fines comerciales u onerosos.
1.1.c. Se mencione la existencia y especificaciones de esta licencia de uso.
References
Abraham, J. D., Abraham, J., & Takrama, J. F. (2018). Morphological characteristics of avocado (Persea americana Mill.) in Ghana. African Journal of Plant Science, 12(April), 88–97. https://doi.org/10.5897/AJPS2017.1625
Babic, L., Matic-Kekic, S., Dedovic, N., Babic, M., & Pavkov, I. (2012). Surface area and volume modeling of the williams pear (Pyrus Communis). International Journal of Food Properties, 15(4), 880–890. https://doi.org/10.1080/10942912.2010.506020
Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8(2), 135–160. https://doi.org/10.1177/096228029900800204
Calvache, G. (1995). Geometria plana y del espacio: geometria analitica dibujo. se.
Concha-Meyer, A., Eifert, J., Wang, H., Sanglay, G., & Meyer, C. (2018). Volume estimation of strawberries, mushrooms, and tomatoes with a machine vision system. International Journal of Food Properties, 21(1), 1867–1874. https://doi.org/10.1080/10942912.2018.1508156
FAO.2023. (2022). FAO. 2023. Principales Frutas Tropicales. Análisis del mercado. Resultados preliminares 2022. Roma. FAO.2023., 35.
Forero, M. G., Gómez, F., & Ramírez, M. (2019). Hass avocado classification by color and volume using a Kinect sensor. Applications of Digital Image Processing XLII, 11137, 465–471.
Hahn, F., & Sanchez, S. (2000). Carrot volume evaluation using imaging algorithms. Journal of Agricultural and Engineering Research, 75(3), 243–249. https://doi.org/10.1006/jaer.1999.0466
Hu, M. H., Dong, Q. L., Malakar, P. K., Liu, B. L., & Jaganathan, G. K. (2015). Determining banana size based on computer vision. International Journal of Food Properties, 18(3), 508–520. https://doi.org/10.1080/10942912.2013.833223
Huynh, T. T. M., Tonthat, L., & Dao, S. V. T. (2022). A vision-based method to estimate volume and mass of fruit / vegetable : Case study of sweet potato A vision-based method to estimate volume and mass of fruit / vegetable : Case study of sweet potato. International Journal of Food Properties, 25(1), 717–732. https://doi.org/10.1080/10942912.2022.2057528
Jadhav, T., Singh, K., & Abhyankar, A. (2019). Volumetric estimation using 3D reconstruction method for grading of fruits. Multimedia Tools and Applications, 78(2), 1613–1634. https://doi.org/10.1007/s11042-018-6271-3
Kadri Bozokalfa, M., & Kilic, M. (2010). Mathematical Modeling in the Estimation of Pepper (Capsicum annuum L.) Fruit Volume. Chilean Journal of Agricultural Research, 70(4), 626–632. https://doi.org/10.4067/s0718-58392010000400013
Koc, A. B. (2007). Determination of watermelon volume using ellipsoid approximation and image processing. Postharvest Biology and Technology, 45(3), 366–371. https://doi.org/10.1016/j.postharvbio.2007.03.010
Mon, T. O., & ZarAung, N. (2020). Vision based volume estimation method for automatic mango grading system. Biosystems Engineering, 198, 338–349. https://doi.org/10.1016/j.biosystemseng.2020.08.021
Nyalala, I., Okinda, C., Nyalala, L., Makange, N., Chao, Q., Chao, L., Yousaf, K., & Chen, K. (2019). Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model. Journal of Food Engineering, 263(July), 288–298. https://doi.org/10.1016/j.jfoodeng.2019.07.012
Orhevba, B. A., & Jinadu, A. O. (2011). Determination of Physico-Chemical Properties and Nutritional Contents of Avocado Pear ( Persea Americana M .). Academic Research International ISSN:, 1(3), 372–381. www.savap.org.pkwww.journals.savap.org.pk
Rashidi, M., Gholami, M., & Abbassi, S. (2009). Cantaloupe volume determination through image processing. Journal of Agricultural Science and Technology, 11(5), 623–631.
Silva, M. V. G., de Almeida, C., Lino, A. C. L., & Fabbro, I. M. D. (2015). Fruit volumetric determination based on moiré techniques. INMATEH - Agricultural Engineering, 45(1), 95–100.
Thomas, G. B., Weir, M. D., Hass, J., Giordano, F. R., & Korkmaz, R. (2010). Thomas’ calculus (Vol. 12). Pearson Boston.
Uribe, L.-, Alejandra, N., & Torres-garcía, B. (2019). Modelo de Aprendizaje para Arduino Uno Básico. Revista de Cómputo Aplicado, 3(10), 15–22.
Urquiza, P., Sebastián, L., Rebollar, R., Juárez, C., Martínez, H., & Tenorio, G. (2015). ANÁLISIS DE VIABILIDAD ECONÓMICA PARA LA PRODUCCIÓN COMERCIAL DE AGUACATE HASS. Revista Mexicana de Agronegocios, 36(1), 1325–1338.
Venkatesh, G. V., Iqbal, S. M., Gopal, A., & Ganesan, D. (2015). Estimation of Volume and Mass of Axi-Symmetric Fruits Using Image Processing Technique. International Journal of Food Properties, 18(3), 608–626. https://doi.org/10.1080/10942912.2013.831444
Villordon, A., Gregorie, J. C., & LaBonte, D. (2020). Direct measurement of sweetpotato surface area and volume using a low-cost 3D scanner for identification of shape features related to processing product recovery. HortScience, 55(5), 722–728. https://doi.org/10.21273/HORTSCI14964-20
Zavala de Paz, J. P., Bucio Castillo, F. J., Anaya Rivera, E. K., Isaza Bohorquez, C. A., Castillo Velásquez, F. A., & Rizzo Sierra, J. A. (2021). Estimating Volume of the Tomato Fruit by 3D Reconstruction Technique. Computacion y Sistemas, 25(4), 813–820. https://doi.org/10.13053/CyS-25-4-4043
Zhang, B., Guo, N., Huang, J., Gu, B., & Zhou, J. (2020). Computer Vision Estimation of the Volume and Weight of Apples by Using 3D Reconstruction and Noncontact Measuring Methods. Journal of Sensors, 2020. https://doi.org/10.1155/2020/5053407
Ziaratban, A., Azadbakht, M., & Ghasemnezhad, A. (2017). Modeling of volume and surface area of apple from their geometric characteristics and artificial neural network. International Journal of Food Properties, 20(4), 762–768. https://doi.org/10.1080/10942912.2016.1180533