Predicting academic performance using machine learning models: A systematic review of the literature
Main Article Content
Abstract
Academic performance prediction has become an area of growing interest in higher education, due to its potential to identify and support at-risk students before they face academic difficulties. This study focuses on the application of machine learning models to predict academic performance, exploring different variables and techniques used in recent research. Through a systematic review of the literature, studies that use ML to predict academic success were analyzed, identifying the most effective variables, criteria, techniques and methodologies. The results highlight the impact of variables such as academic history, sociodemographic, economic and cultural factors on student performance, as well as the effectiveness of techniques such as artificial neural networks, decision trees and support vector machines. Finally, the implications of these findings for the development of more efficient and personalized educational interventions are discussed.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Derechos de autor
Las obras que se publican en 593 Digital Publisher CEIT están sujetas a los siguientes términos:
1.1. 593 Digital Publisher CEIT, conserva los derechos patrimoniales (copyright) de las obras publicadas, favorece y permite la reutilización de las mismas bajo la licencia Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0, por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
1.1.a. Se cite la autoría y fuente original de su publicación (revista, editorial, URL).
1.1.b. No se usen para fines comerciales u onerosos.
1.1.c. Se mencione la existencia y especificaciones de esta licencia de uso.
References
Abdu, E. (2024). Student Performance Prediction Using Machine Learning Algorithms. Applied Computational Intelligence and Soft Computing, 2024, https://doi.org/10.1155/2024/4067721
Aco, A., Hancco, B., Pérez, Yasiel. (2023). Análisis comparativo de Técnicas de Machine Learning para la predicción de casos de deserción universitaria. RISTI-Revista Ibérica de Sistemas e Tecnologias de Informação, 51(1), 84-98. https://doi.org/10.17013/risti.51.84-98
Ahammad, K., Chakraborty, P., Akter, E., et al. (2021). A Comparative Study of Different Machine Learning Techniques to Predict the Result of an Individual Student Using Previous Performances. International Journal of Computer Science and Information Security (IJCSIS), 19(1), 5-10. https://doi.org/10.5281/ZENODO.4533373
Al, L., Al, J., Tarhini, A., et al. (2023). Using machine learning to predict factors affecting academic performance: the case of college students on academic probation. Education and Information Technologies, 28(10), 12407-12432. https://doi.org/10.1007/s10639-023-11700-0
Al, Y., & Ahmad, N. (2022). Prediction methods on students academic performance: a review. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 41(1), 196-217. https://doi.org/10.17605/OSF.IO/CHJF2
Alhazmi, H. (2022). Detection of students’ problems in distance education using topic modeling and machine learning. Future Internet, 14(6), 170. https://doi.org/10.3390/fi14060170
Aráuz, D., & Martínez, J. (2023). Predicción del rendimiento académico en la UNADECA por medio de sistemas de clasificación. UNACIENCIA: Revista de Estudios e Investigaciones, 16(31), 17-35. https://doi.org/10.35997/unaciencia.v16i31.738
Bellaj, M., & Bendahmane, A., & Boudra, S., et al. (2024). Educational Data Mining: Employing Machine Learning Techniques and Hyperparameter Optimization to Improve Students Academic Performance. International Journal of Online and Biomedical Engineering (iJOE), 20(3), 55-74. https://doi.org/10.3991/ijoe.v20i03.46287
Bravo, L., & Nieves, N., & Gonzalez, K. (2022). Prediction of University-Level Academic Performance through Machine Learning Mechanisms and Supervised Methods. Ingeniería, 28(1), e19514. https://doi.org/10.14483/23448393.19514
Cardozo, S., Silveira, A., & Fonseca, B. (2022). Detección temprana del riesgo escolar. Predicción de trayectorias de rezago en la educación primaria en Uruguay mediante técnicas de machine learning. Revista latinoamericana de estudios educativos, 52(2), 297-326. https://doi.org/10.48102/rlee.2022.52.2.391
Chen, S, & Ding, Y. (2023). A Machine Learning Approach to Predicting Academic Performance in Pennsylvania’s Schools. Social Sciences, 12(3), 118. https://doi.org/10.3390/socsci12030118
Contreas, L., Nieves, N., & González, G., et al. (2023). Prediction of University-Level Academic Performance through Machine Learning Mechanisms and Supervised Methods. Ingeniería, 28(1), e19514. https://doi.org/10.14483/23448393.19514
Cruz, E., González, M., & Rangel, J. (2022). Técnicas de machine learning aplicadas a la evaluación del rendimiento ya la predicción de la deserción de estudiantes universitarios, una revisión. Prisma Tecnológico, 13(1), 77-87. https://doi.org/10.33412/pri.v13.1.3039
Czibula, G., Ciubotariu, G., Maier, M. I., et al. (2022). IntelliDaM: A machine learning-based framework for enhancing the performance of decision-making processes. A case study for educational data mining. IEEE Access, 10(1), 80651-80666. https://doi.org/10.1109/ACCESS.2022.3195531
de Morais, F, Melo, A., Moutinho, M., et al. (2021). Modelos de regressão aplicados na previsão da evasão escolar do ensino básico: uma revisão sistemática da literatura. Anais do XXXII Simpósio Brasileiro de Informática na Educação, 168-178. https://doi.org/10.5753/sbie.2021.218504
Dinh, H., & Cu, G., & Pham, T. (2020). An Empirical Study for Student Academic Performance Prediction Using Machine Learning Techniques. International Journal of Computer Science and Information Security, 20(20).
Doctor, A. (2023). A predictive model using machine learning algorithm in identifying students probability on passing semestral course. International Journal of Computing Sciences Research, 7(1), 1830-1856. https://doi.org/10.25147/ijcsr.2017.001.1.135
Dúo, P., Moreno, A., López, J., et al. (2023). Inteligencia Artificial y Machine Learning como recurso educativo desde la perspectiva de docentes en distintas etapas educativas no universitarias. RiiTE Revista interuniversitaria de investigación en Tecnología Educativa, 58-78. https://doi.org/10.6018/riite.579611
Forero, W., & Bennasar, F. (2024). Techniques and applications of Machine Learning and Artificial Intelligence in education: a systematic review. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), 209-253. https://doi.org/10.5944/ried.27.1.37491
Gamboa, J., & Salinas, J. (2022). Predicción de la situación académica en alumnos de pregrado usando algoritmos de Machine Learning. Perfiles, 1(27), 4-10. https://doi.org/10.47187/perf.v1i27.142
Gil, V., & Quintero, C. (2023). Análisis de variables asociadas al rendimiento académico en cursos universitarios virtuales. Formación universitaria, 16(4), 33-42. https://doi.org/10.4067/s0718-50062023000400033
Gonzalez, A., Noguez, J., Neri, L., et al. (2023). Predictive analytics study to determine undergraduate students at risk of dropout. Frontiers in Education, 8(1). https://doi.org/10.3389/feduc.2023.1244686
Guanín, J., & Guaña, J., & Casillas, J. (2024). Predicting Academic Success of College Students Using Machine Learning Techniques. Data, 9(4), 60. https://doi.org/10.3390/data9040060
Hoyos, J., & Daza, G. (2023). Predictive Model to Identify College Students with High Dropout Rates. Revista electrónica de investigación educativa, 25(13). https://doi.org/10.24320/redie.2023.25.e13.5398
Hussain, S., & Jr, I. (2023). Significance of Education Data Mining in Student’s Academic Performance Prediction and Analysis. International Journal of Innovations in Science & Technology, 5(1), 215-231.
Incio, F., Capuñay, D., & Estela, R. (2023). Modelo de red neuronal artificial para predecir resultados académicos en la asignatura Matemática II. Revista Electrónica Educare, 27(1), 338-359. https://doi.org/10.15359/ree.27-1.14516
Lebkiri, N., Daoudi, M., Abidli, Z., et al. (2021). Using machine learning for prediction students failure in Morocco: an application of the CRISP-DM methodology. Int. J. Educ. Inf. Technol, 15(1), 344-352. https://doi.org/10.46300/9109.2021.15.36
Li, Y. (2024). Data Analysis of Student Academic Performance and Prediction of Student Academic Performance Based on Machine Learning Algorithms. Communications in Humanities Research, 32(1), 65-71. https://doi.org/10.54254/2753-7064/32/20240013
Maqsood, R., Ceravolo, P., Ahmad, M. et al. (2023). Examining students’ course trajectories using data mining and visualization approaches. Int J Educ Technol High Educ, 20(55). https://doi.org/10.1186/s41239-023-00423-4
Martins, L, dos Santos, V., de Oliveira, A., et al. (2023). Revisão Sistemática sobre Machine Learning Aplicada a Bioacústica utilizando o Método PRISMA. Anais da XII Escola Regional de Informática de Mato Grosso, 251-255. https://doi.org/10.5753/eri-mt.2023.236622
Morales, M., González, J., Robles, H., et al. (2022). Algoritmos de aprendizaje automático para la predicción del logro académico. Revista Iberoamericana para la Investigación y el Desarrollo Educativo (RIDE), 12(24), 35. https://doi.org/10.23913/ride.v12i24.1180
Mulyana, A., & Puspita, W., & Unjung, J. (2023). Increased accuracy in predicting student academic performance using random forest classifier. Journal of Student Research Exploration, 1, 94-103. https://doi.org/10.52465/josre.v1i2.169
Mushi, P., & Ngondya, D. (2021). Prediction of mathematics performance using educational data mining techniques. International Journal of Advanced Computer Research, 11(1), 83-102. https://doi.org/10.19101/IJACR.2021.1152024
Nakamura, K., Ishihara, M., Horikoshi, I., et al. (2024). Uncovering insights from big data: change point detection of classroom engagement. Smart Learn. Environ, 11(31). https://doi.org/10.1186/s40561-024-00317-6
Olukoya, B. (2023). Using ensemble random forest, boosting and base classifiers to ameliorate prediction of students academic performance. International Journal of Advance Research, Ideas, and Innovations in Technology. 6(1), 654.
Oreški, D., & Zamuda, D. (2022). Machine Learning Based Model for Predicting Student Outcomes. In 12th International Conference on Industrial Engineering and Operations Management (IEOM 2022), 4884-4894. https://doi.org/10.46254/AN12.20220967
Patil, M., Jadhav, S., Talekar, S., et al. (2023). The role of mathematics in machine learning. Journal of Data Acquisition and Processing, 3(1), 1062-1073. https://doi.org/10.5281/zenodo.7702430
Pugosa, C., & Yumol, C., & Nogadas, C., et al. (2024). Effects of Heuristic Method on Students’ Performance in Mathematics. British Journal of Teacher Education and Pedagogy, 3(1), 69-86. https://doi.org/10.32996/bjtep.2024.3.2.8
Quijije, H., & Maldonado Zuñiga, K. (2023). Técnica de minería de datos para procesos educativos en estudiantes con necesidades educativas especiales basado en un modelo predictivo. Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS, 5(5), 205–217. https://doi.org/10.59169/pentaciencias.v5i5.730
Ramos, J., Rodrigues, R., Silva, J.C., et al. (2020). CRISP-EDM: uma proposta de adaptação do Modelo CRISP-DM para mineração de dados educacionais. In Anais do XXXI Simpósio Brasileiro de Informática na Educação. https://doi.org/10.5753/cbie.sbie.2020.1092
Roslan, M., & Chen, C. (2022). Educational data mining for student performance prediction: A systematic literature review (2015-2021). International Journal of Emerging Technologies in Learning (iJET), 17(5), 147-179. https://doi.org/http://dx.https://doi.org/.org/10.3991/ijet.v17i05.27685
Said, N., & Srinivasa, G. (2023). Application of Discriminant Analysis to Predict Students’ Performances in Mathematics in Advanced Secondary Schools. European Journal of Statistics, 3(1), 1-10. https://doi.org/10.28924/ada/stat.3.8
Salles, F., Dos Santos, R. & Keskpaik, S. (2020). When didactics meet data science: process data analysis in large-scale mathematics assessment in France. Large-scale Assess Educ, 8(7). https://doi.org/10.1186/s40536-020-00085-y
Sánchez, R., & Mateos, J. (2023). Minería de Datos Educacionales: Descubrir tesoros ocultos durante el aprendizaje: Educational Data Mining: Discover hidden treasures during learning. REVISTA CIENTÍFICA ECOCIENCIA, 10(1), 18-41. https://doi.org/10.21855/ecociencia.100.830
Selly, A., & Anna, A. (2022). Learning Analytics dan Educational Data Mining pada Data Pendidikan. JURNAL RISET PEMBELAJARAN MATEMATIKA SEKOLAH, 6(1), 12-20. https://doi.org/10.21009/jrpms.061.02
Shi, X. (2024). Character Data Mining in Educational Scene. Journal of Electrical Systems, 20(1), 57-63. https://doi.org/10.52783/jes.2358
Sukanya, S., & D William, A., & Mahesh, et al. (2023). A Machine Learning Approach to Predicting Academic Performance. International Journal of Engineering Technology and Management Sciences, 7(1), 12-16. https://doi.org/10.46647/ijetms.2023.v07i06.003
Thorat, R. (2024). Role of Mathematics in Data Science - Machine learning. International Journal of Scientific Research in Modern Science and Technology, 3(3), 18-21. https://doi.org/10.59828/ijsrmst.v3i3.191
Xie, G., Liu, X. (2023). Gender in mathematics: how gender role perception influences mathematical capability in junior high school. The Journal of Chinese Sociology, 10(1), 10. https://doi.org/10.1186/s40711-023-00188-3
Yadav, N., & Deshmukh, S. (2023). Prediction of Student Performance Using Machine Learning Techniques: A Review. In International Conference on Applications of Machine Intelligence and Data Analytics (ICAMIDA 2022), Atlantis Press, 735-741. https://doi.org/10.2991/978-94-6463-136-4_63
Yağcı, M. (2022). Educational data mining: prediction of students academic performance using machine learning algorithms. Smart Learn, Environ, 9(11). https://doi.org/10.1186/s40561-022-00192-z
Yan, C. (2022). Research on Student Academic Performance Prediction Methods. Highlights in Science, Engineering and Technology, 24(1), 257-263. https://doi.org/10.54097/hset.v24i.3940
Yu, N., Wen, W. (2020). How well do teachers predict students’ actions in solving an ill-defined problem in stem education: a solution using sequential pattern mining. IEEE Access, 8(1), 134976-134986. https://doi.org/10.1109/ACCESS.2020.3010168
Zhao, L., Ren, J., Zhang, L., et al. (2023). Quantitative analysis and prediction of academic performance of students using machine learning. Sustainability, 15(16), 12531. https://doi.org/10.3390/su151612531