Analysis of losses and efficiency calculation in a 2bhp firetube boiler

Main Article Content

Alejandro Sebastián Sánchez-Mendoza
Milton Alfonso Criollo-Turusina
Miguel Ángel Lema-Carrera

Abstract

The use of boilers at residential and industrial levels is very common in various ap-plications and processes, leading to significant fuel and LPG consumption. For this reason, energy efficiency analysis is important to reduce losses caused by heat dissipation and to implement maintenance and changes in the generation process. The methodology used in the present study describes the heat losses using a thermal camera, water level gauge, steam thermometer, and environmental combustion analyzer to determine the composition of combustion gases. Efficiency calculations were performed through data collection using both direct and indirect methods of energy efficiency. The results obtained through the calculations determined an efficiency of 67,8%, utilizing 7,45 kW out of the 11 kW entering the system. It is concluded that the greatest efficiency loss occurs due to heat transfer by radiation and unburned gases. These findings suggest the need to improve component insulation and tube maintenance to reduce the Bacharach index and minimize losses.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sánchez-Mendoza, A., Criollo-Turusina, M. ., & Lema-Carrera , M. . (2024). Analysis of losses and efficiency calculation in a 2bhp firetube boiler. 593 Digital Publisher CEIT, 9(6), 521-531. https://doi.org/10.33386/593dp.2024.6.2713
Section
Investigaciones /estudios empíricos
Author Biographies

Alejandro Sebastián Sánchez-Mendoza, Universidad Estatal de Milagro - Ecuador

https://orcid.org/0009-0002-0618-3162

Mechanical Engineer graduated from the Technical University of Ambato, master in Renewable Energy. A professional with a solid career in both the public and private sectors, with experience in academia and the practical application of acquired knowledge, covering fields such as exact sciences, mathematics, physics, and chemistry. Additionally, has collaborated in mechanical maintenance work, thermographic studies, and the development of clean energy technologies.

Milton Alfonso Criollo-Turusina, Universidad Estatal de Milagro - Ecuador

http://orcid.org/0000-0002-3394-1160

Bachelor of Science in Education graduated from the University of Guayaquil, Master in University Teaching from the University Cesar Vallejo, Doctoral Candidate in Education from the University Cesar Vallejo. Professor of Degree, Systematization of the Degree Narrative and Methods and Techniques of Research in Education at the State University of Milagro, referee body of the permanent calls of the Editorial Unit of the Technical University of Machala.

Miguel Ángel Lema-Carrera , Universidad Estatal de Milagro / Universidad de las Fuerzas Armadas “ESPE” - Ecuador

https://orcid.org/0000-0001-7934-8891

Electronic and Control Engineer from Escuela Politécnica Nacional. Master in Physics and Mathematics from the University of Castilla-La Mancha, Spain. With over 10 years of experience as a university professor in the field of exact sciences. He has supervised multiple engineering thesis projects and led two research initiatives focused on the application of technology in agricultural sciences. His experience combines solid academic training with a dedication to the development and dissemination of knowledge in higher education.

References

Almaza, O. (2013). Apuntes para una estrategia en el desarrollo de la energética azucarera. Anales de la Academia de Ciencias de Cuba. http://revistaccuba.sld.cu/index.php/revacc/article/view/51

Annaratone, D. (2008). Steam generators: Description and design. Springer Science & Business Media. https://books.google.es/books?hl=es&lr=&id=0qvUKv-sl_oC&oi=fnd&pg=PA1&dq=baoiler+for+generation+steam+&ots=vhxssueO5e&sig=pm_mNz1DpoD9J7sBYwz18dlWmk0

Arjona, A. (2019). Revisión de métodos para la determinación de pérdidas y eficiencia energética en generadores de vapor. https://idus.us.es/handle/11441/93221

Barbieri, R. C., Campos, J. C. C., Brito, R. F., Siqueira, A. M., Minette, L. J., & Acevedo, E. J. (2020). Análisis de la Eficiencia Energética de una Caldera Industrial Alimentada por Leña. Research, Society and Development, 9(1), e58911606-e58911606.

Barma, M. C., Saidur, R., Rahman, S. M. A., Allouhi, A., Akash, B. A., & Sait, S. M. (2017). A review on boilers energy use, energy savings, and emissions reductions. Renewable and Sustainable Energy Reviews, 79, 970-983.

Bulla, E. A., Guerrero-Fajardo, C. A., & Sierra-Vargas, F. E. (2015). Producción de biodiésel por etanolisis utilizando aceites de fritura de hoteles y su uso en calderas pirotubulares. Iteckne, 12(1), 44-53.

Cengel, Y. (2016). Transferencia de calor y masa (3ra ed.). McGrawHill.

Corporación Interamericana de Inversiones. (2018). Reducción de facturación de combustibles fósiles a traves del uso racional de la energía. https://www.pesic.org/wp-content/uploads/2018/05/2-Eficiencia-en-Calderas.pdf

Fuentes, O. F., & Lillo, S. M. (2022). Desarrollo de un simulador para la enseñanza de procesos térmicos en una caldera pirotubular de cuatro pasos. Revista Iberoamericana de Ingeniería Mecánica, 26(2), 25-36.

García, J. A. C., Aya, Á. A. R., Luna, J. A. F., & Contreras, R. H. P. (2020). Sistema de monitoreo en tiempo real de gases CO, CO2, NOX y PM2, 5 en la ciudad de Villavicencio. Memorias. https://hemeroteca.unad.edu.co/index.php/memorias/article/view/4172

Holman, J. (1999). Transferencia de calor (10ma ed.). Continetal S,A.

INDECOPI. (2009). Normatia Técnica Peruana 350.300.

Jiménez, R., Madrigal Monzón, J. A., Lapido Rodríguez, M. J., & Vidal Moya, D. A. (2016). Método para la evaluación de la eficiencia e impacto ambiental de un generador de vapor. Ingeniería Energética, 37(2), 135-143.

Menjívar, I., Morán, L., & Chávez, F. (2015). Rutina para la estimación del rendimiento energético de distintos combustibles de caldera. http://repositorio.uca.edu.sv/jspui/handle/11674/6068

Olarte, W., Botero, M., & Zabaleta, B. C. (2011). Aplicación de la termografía en el mantenimiento predictivo. Scientia et technica, 2(48), 253-256.

Patro, B. (2016). Efficiency studies of combination tube boilers. Alexandria Engineering Journal, 55(1), 193-202. https://doi.org/10.1016/j.aej.2015.12.007

Pronobis, M. (2020). Environmentally oriented modernization of power boilers. Elsevier. https://books.google.es/books?hl=es&lr=&id=SeXEDwAAQBAJ&oi=fnd&pg=PP1&dq=3Pronobis,+M.+(2020).+Environmentally+Oriented+Modernization+of+Power+Boi-lers.+Pa%C3%ADses+Bajos:+Elsevier+Science.&ots=nYG0XBKhBo&sig=VwDwKt5kw-FoH-A1VLFDSA8r3CY

Sanz, M., & Patiño, R. (2023). Manual práctico del operador de calderas industriales 3. Ediciones Paraninfo, SA. https://books.google.es/books?hl=es&lr=&id=9SnFEAAAQBAJ&oi=fnd&pg=PR7&dq=tipos+de+calderas&ots=dCchCgzzln&sig=LLcCHn4-Xt2ggJXnqj99Q_qeACU

Solís Pérez, E. P., & Custodio Rodríguez, J. C. (2017). Evaluación del sistema de recuperación de purgas de fondo y de nivel de las calderas pirotubulares en la empresa pesquera Austral Group saa–Coishco. https://renati.sunedu.gob.pe/handle/sunedu/3340309

Soto, J. (1996). Fundamentos sobre ahorro de energía. Yucatán., México: FOMES.

Zala, A. R. S. (2019). Performance Analysis of Industrial Boiler. https://www.researchgate.net/profile/Aniruddhasinh-Rana/publication/376400321_Performance_Analysis_of_Industrial_Boiler/links/6576fbf7fc4b416622b82739/Performance-Analysis-of-Industrial-Boiler.pdf

Most read articles by the same author(s)