Business intelligence in education. A systematic review of literature
Main Article Content
Abstract
This article aims to carry out a systematic review on aspects and components of greater support for business intelligence in education during the years 2020-2025 and for this purpose the search chain has been considered, obtaining 668 scientific articles referring to the subject, of which the inclusion and exclusion criteria have been applied, obtaining 25 articles to answer 4 research questions which would be focused on the main objectives, the tools and technologies, the dimensions of the business intelligence (BI) models, and the KPI measures and indicators that have been considered in the BI solution in education. BI solutions are crucial to improve decision making and optimize administrative and academic processes. The motivation of this review is to synthesize the existing literature, educational institutions can adopt best practices and improve their decision-making processes. The SR reveals that the implementation of BI in education allows institutions to significantly improve their operational efficiency and educational quality. In conclusion, the adoption of BI technologies and tools in the educational field is essential to face the challenges of data management and optimize educational processes, which improves administrative efficiency and academic performance.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Derechos de autor
Las obras que se publican en 593 Digital Publisher CEIT están sujetas a los siguientes términos:
1.1. 593 Digital Publisher CEIT, conserva los derechos patrimoniales (copyright) de las obras publicadas, favorece y permite la reutilización de las mismas bajo la licencia Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0, por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
1.1.a. Se cite la autoría y fuente original de su publicación (revista, editorial, URL).
1.1.b. No se usen para fines comerciales u onerosos.
1.1.c. Se mencione la existencia y especificaciones de esta licencia de uso.
References
Alarcón, C. H. M., García, C. D. R., Jaramillo, M. F., & Poveda, E. M. B. (2018). Adopción de software de Business Intelligence: Una revisión sistemática de literatura aplicando minería de texto.
Alejandro Becerra, J. P., Aguirre Ochoa, M., Romero Torres, M. E., & Estrella Ríos, L. (2022). Inteligencia de negocios con Power Pivot usado en el Instituto Superior Tecnológico Huaquillas. Cumbres, 7(2), 71-81. https://doi.org/10.48190/cumbres.v7n2a6
Alvarado-Apodaca, J., Ramírez-Noriega, A., Tripp-Barba, C., Martínez-Ramírez, Y., & Álvarez Sánchez, I. N. (2023). Inteligencia de negocios en américa latina: Una revisión sistemática de literatura. Revista de Investigación en Tecnologías de la Información, 11(24), 76-89. https://doi.org/10.36825/RITI.11.24.007
Berges, A., Ramirez, P., Pau, I., Tejero, A., & Crespo, A. G. (2021). A Framework for Strategic Intelligence Systems Applied to Education Management: A Pilot Study in the Community of Madrid. IEEE Access, 9, 75313-75323. https://doi.org/10.1109/ACCESS.2021.3081734
Combita Niño, H. A., Cómbita Niño, J. P., & Morales Ortega, R. (2020). Business intelligence governance framework in a university: Universidad de la costa case study. International Journal of Information Management, 50, 405-412. https://doi.org/10.1016/j.ijinfomgt.2018.11.012
Davenport, T., & Harris, J. (2007). Competir en análisis. La nueva ciencia sobre ganar.
Enriquez Herrera, J. V., Lopez Goyez, J. P., & Zabala Villarreal, W. A. (2022). Business Intelligence & Data Analytics applied to the curricular monitoring process at the UPEC university. Minerva, 1(Special), 9-20. https://doi.org/10.47460/minerva.v1iSpecial.75
Enríquez-Herrera, J. V., Romero-Fernández, A. J., Sandoval-Pillajo, A. L., & Freire-Lescano, L. R. (2022). Business intelligence en los procesos de seguimiento y evaluación del plan operativo anual de una universidad. CIENCIAMATRIA, 8(4), 941-952. https://doi.org/10.35381/cm.v8i4.900
Fadzil, A., Aziz, A. A., & Mustafa, W. A. (2023). Modelling business intelligence technologies framework for analyzing academic performance from learning management systems (LMS). Journal of Autonomous Intelligence, 6(3). https://doi.org/10.32629/jai.v6i3.872
Ferreira, F., Santos, B. S., Marques, B., & Dias, P. (2020). FICAvis: Data Visualization to Prevent University Dropout. 2020 24th International Conference Information Visualisation (IV), 57-62. https://doi.org/10.1109/IV51561.2020.00034
Franceschini, F., Galetto, M., & Maisano, D. (2019). Designing a Performance Measurement System. En F. Franceschini, M. Galetto, & D. Maisano, Designing Performance Measurement Systems (pp. 133-205). Springer International Publishing. https://doi.org/10.1007/978-3-030-01192-5_5
Freitas Junior, O. de G., Heuer de Carvalho, V. D., Medeiros Barros, P. A., & Braga, M. de M. (2022). An Experience with Business Intelligence to Support the Academic Management at a Brazilian Federal University.
Girsang, A. S., Sunarna, D. A., Syaikhoni, A., & de, A. A. D. (2020). Inteligencia de Negocios para la Gestión Educativa Sistema. 2019.
Ilha, L., & Moreira Junior, F. D. J. (2021). A CONSTRUÇÃO DE UM DATA WAREHOUSE UTILIZANDO OS INDICADORES EDUCACIONAIS DO INEP. https://doi.org/10.1590/SciELOPreprints.2166
Karabtsev, S., Kotov, R., Davzit, I., & Gurov, E. (2023). Building data marts to analyze university faculty activities using power BI. E3S Web of Conferences, 419, 02014. https://doi.org/10.1051/e3sconf/202341902014
Khatibi, V., Keramati, A., & Shirazi, F. (2020). Deployment of a business intelligence model to evaluate Iranian national higher education. Social Sciences & Humanities Open, 2(1), 100056. https://doi.org/10.1016/j.ssaho.2020.100056
Lescano, L. R. F., & Llerena, L. A. (2023). LA EVALUACIÓN DE DESEMPEÑO A TRAVÉS DE INDICADORES CLAVE DE RENDIMIENTO (KPI’S).
Mamykova, Z., Bolatkhan, M., Kopnova, O., Zubairova, M., Surina, N., & Rabat, S. (2021). Development of the information and analytical system of the university. Journal of Mathematics, Mechanics and Computer Science, 112(4). https://doi.org/10.26577/JMMCS.2021.v112.i4.13
Miguel Vite Ayala, M. V. A., Paredes Camacho, J. E., Quiroga Gallo, M. A., & Gonzales Gutierrez, E. W. (2023). Dashboard for the improvement of school management in educational institutions. Ciencia Latina Revista Científica Multidisciplinar, 7(1), 3018-3037. https://doi.org/10.37811/cl_rcm.v7i1.4639
Mora-Vicarioli, F. R., Arce-Solano, J. L., Padilla-Romero, K., & Muñiz-Umaña, G. (2021). Implementación de un sistema de inteligencia de negocios. Escuela de Ciencias de la Administración UNED. Revista Electrónica Calidad en la Educación Superior, 12(1), 76-103. https://doi.org/10.22458/caes.v12i1.3520
Moscoso-Zea, O., Paredes-Gualtor, J., & Lujan-Mora, S. (2018). A Holistic View of Data Warehousing in Education. IEEE Access, 6, 64659-64673. https://doi.org/10.1109/ACCESS.2018.2876753
Muryjas, P., & Rzemieniak, M. (2021). Gestionando el Proceso de Evaluación de los Docentes Académicos con el Uso de Data Mart y Business Intelligence.
Najm, I. A., Dahr, J. M., Hamoud, A. K., Hashim, A. S., Awadh, W. A., Kamel, M. B. M., & Humadi, A. M. (2022). OLAP Mining with Educational Data Mart to Predict Students’ Performance. Informatica, 46(5). https://doi.org/10.31449/inf.v46i5.3853
Ordoñez Cuthbert, D. K., & Sambola, D.-M. (2023). Herramienta basada en Inteligencia de Negocios y Analíticas para la toma de decisiones académicas. Caso de Bluefields Indian & Caribbean University. Revista Científica de FAREM-Estelí, 46, 247-261. https://doi.org/10.5377/farem.v12i46.16489
Parmenter, D. (2020). David Parmenter’s KPI Guide – An overview of his KPI methodology.
Piri, Z., Samad, T., & Elahi, S. M. H. (2020). Visualización de Información para Apoyar el Proceso de Toma de Decisiones en el Contexto de la Gestión Académica.
Rehman, I., & Soomro. (2020). Proposed Framework for HEC Pakistan Data Warehouse.
Reinschmidt, J., & Francoise, A. (2000). Business Intelligence Certification Guide.
Saquisili-Ortega, J., & Ávila-Correa, B. (2023). Análisis de la Brecha Educativa por Pandemia de los Estudiantes de Bachillerato Utilizando Inteligencia de Negocios. 593 Digital Publisher CEIT, 8(6), 474-489. https://doi.org/10.33386/593dp.2023.6.2149
Sorour, A., & Atkins, A. S. (2024). Big data challenge for monitoring quality in higher education institutions using business intelligence dashboards. Journal of Electronic Science and Technology, 22(1), 100233. https://doi.org/10.1016/j.jnlest.2024.100233
Sorour, A., Atkins, A. S., Stanier, C. F., & Alharbi, F. D. (2020). The Role of Business Intelligence and Analytics in Higher Education Quality: A Proposed Architecture.
Varela, B., & Pedrosa, I. (2020). Un análisis de sensibilidad de Twitter numa Instituição de Ensino Superior utilizando Power BI.
Webber, K., & Zheng, H. (2019). Data Analytics and the Imperatives for Data Informed Decision-Making in Higher Education.
Wells, J., & Hess, T. (2004). Understanding Decision-Making in Data Warehousing and Related Decision Support Systems: An Explanatory Study of a Customer Relationship Management Application.