Evaluation of the Emotional State of the employees of the company FenixCorp-ADS using Machine Learning

Main Article Content

Yomara Elizabeth Tello-Oña
Luis René Quisaguano-Collaguazo

Abstract

Artificial Intelligence (AI) is currently booming, not only in industrial processes, but also in fields related to activities that contribute to the development of organizations and human knowledge. Machine Learning is contained within the computational context of AI, divided into three main approaches: Supervised Machine Learning (AAS), Unsupervised Machine Learning and Reinforcement Learning, which are techniques and algorithms capable of "learning and reasoning" by simulating the human brain, and allows classifying and predicting the behavior of the data supplied to the chosen model, through the use of the SciKit-Learn library and other Python tools, a programming language widely used in data analysis and sentiment analysis, another tool for extracting information based on subjective opinions. Emotional State (ES) is a conscious and unconscious reaction in response to a specific stimulus at a specific time or situation that individuals have. In order to establish a possible relationship with the job performance of employees and the talent drain of the company FenixCorp-ADS, a questionnaire was developed via Web and the classification and prediction algorithms of supervised and unsupervised machine learning were chosen, which allowed a comparative analysis to determine the most efficient model of sentiment analysis performed, contributing to its application in a more continuous way by business organizations in order to use it to automate these processes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Tello-Oña, Y., & Quisaguano-Collaguazo, L. . (2024). Evaluation of the Emotional State of the employees of the company FenixCorp-ADS using Machine Learning. 593 Digital Publisher CEIT, 9(6), 192-203. https://doi.org/10.33386/593dp.2024.6.2695
Section
Investigaciones /estudios empíricos
Author Biographies

Yomara Elizabeth Tello-Oña, Universidad Técnica de Cotopaxi - Ecuador

http://orcid.org/0009-0000-9026-6950

Computer Science and Computer Systems Engineer with a fervent passion for innovation in the field of data science and artificial intelligence. Currently, I am pursuing a Master's degree in Data Science to deepen my understanding and skills in advanced data analysis and intelligent algorithm development. My interest lies in applying artificial intelligence techniques to address complex challenges in various industries and contribute to the advancement of technology and society. My professional experience includes approximately 6 years as a software developer at FenixCorp.

Luis René Quisaguano-Collaguazo, Universidad Técnica de Cotopaxi - Ecuador

http://orcid.org/0000-0003-1345-0898

I have expertise in the field of information systems development, database administration, business intelligence, artificial intelligence, and technology in general. My education reflects a responsible approach, and I possess the ability to work both collaboratively in a team and independently, demonstrating creativity, initiative, and punctuality. My professional experience includes approximately 3 years as a university professor and over 7 years as a consultant for IT projects. During this time, I have been involved in the development of information systems in web, desktop, and/or mobile environments, implementing agile methodologies and utilizing tools such as C#, Java, PHP, Python, Javascript, PostgreSQL, SQL Server, Oracle, MariaDB, Firebase, MongoDB, Hadoop and others.

References

Alcalde Chulilla, J. (2021). Análisis de sentimiento de textos basado en opiniones de películas usando algoritmos de aprendizaje computacional [Tesis de grado, Universidad Oberta de Catalunya]. https://openaccess.uoc.edu/bitstream/10609/132328/7/jchulillaTFG0621memoria.pdf

Andrade Muñoz, J. (2023). Entendiendo el poder de la Inteligencia Artificial. TEPEXI, Boletín Científico de la Escuela Superior del Rio, 10(20), 4. https://repository.uaeh.edu.mx/revistas/index.php/tepexi/issue/archive

Aragón Zepeda, K. I. (2019). Inteligencia emocional y su relación en el desempeño laboral. Revista Naturaleza, Sociedad y Ambiente, 6(1), 57-67. https://doi.org/10.37533/cunsurori.v6i1.41

Blanco Canales, A. (2019). La emoción y sus componentes. Grupo LEIDE, 7. https://grupoleide.com/wp-content/uploads/2019/09/Ana-Blanco-y-Nati-Hern%C3%A1ndez-C%C3%B3mo-sentimos-la-L2.pdf

Bobadilla, J. (2020). Machine learning y deep learning. Usando Python. Ediciones de la U. https://api.pageplace.de/preview/DT0400.9789587921465_A41974869/preview-9789587921465_A41974869.pdf

Carceller Llorens, F. (2023). Detección de estados de ánimo usando técnicas de machine learning [Tesis Magister, Universidad Politécnica de Valencia]. http://polipapers.upv.es/index.php/IA/article/view/3293

Lovo, J. (2020). Síndrome de burnout: Un problema moderno. Entorno, 70, 110-120. https://doi.org/10.5377/entorno.v0i70.10371

Olivas, J. Á., Montoro, A., & Lorenzo, A. (2023). Informe OBS Inteligencia Artificial (p. 38). OBS Business School. https://marketing.onlinebschool.es/Prensa/Informes/Informe%20OBS%20Inteligencia%20Artificial%202023.pdf

Rosenbrock, G., Trossero, S., & Pascal, A. (2021). Técnicas de Análisis de Sentimientos Aplicadas a la Valoración de Opiniones en el Lenguaje Español. CACIC 2021 UNSa, 291-300. https://www.researchgate.net/publication/355887680_Tecnicas_de_Analisis_de_Sentimientos_Aplicadas_a_la_Valoracion_de_Opiniones_en_el_Lenguaje_Espanol

Saura, J. R., Reyes Menéndez, A., & Palos Sánchez, P. (2018). Un análisis de sentimiento en Twitter con Machine Learning: Identificando el sentimiento sobre oferta de #Black Friday. Revista Espacios, 39(42), 16. https://www.revistaespacios.com/a18v39n42/a18v39n42p16.pdf

Tamayo y Tamayo, M. (2003). El proceso de la investigación científica (4.a ed.). Limusa, S.A.

Velásquez Sánchez, E. (2022). Estado del Arte de Machine Learning y su Aplicación en el Experimento LHCb [Estado del arte de maestría en matemáticas, Universidad Nacional Autónoma de Honduras]. https://mm.unah.edu.hn/dmsdocument/13661-estado-del-arte-de-machine-learning-y-su-aplicacion-en-el-experimento-lhcb-pdf