Vulnerability Analysis in Network Infrastructure: A Systematic Literature Review

Main Article Content

Edison Mauricio Cornejo-Jiménez
David Omar Guevara-Aulestia

Abstract

With the advancement of the digital era, organizations have experienced an increasing dependence on information and communication technologies. This increase in connectivity has led to an increase in cyber attacks on network infrastructures, putting critical assets and data at risk. This article develops a systematic literature review on the analysis of network infrastructure vulnerabilities in the last 10 years, using the IEEE, SCOPUS and Redalyc databases for the review process. It was determined that the most widely used method was traffic analysis, and the most widely used technique was network protocol fuzzing. The analysis of vulnerabilities on network protocols predominated and, therefore, the analysis of the service component. The analysis of vulnerabilities in network infrastructures is a research area that has little scientific documentation published in the last 10 years, requiring special attention in the industrial field, as well as further research in emerging areas such as the Internet of Things, artificial intelligence and cloud computing.

Downloads

Download data is not yet available.

Article Details

How to Cite
Cornejo-Jiménez , E. ., & Guevara-Aulestia , D. (2024). Vulnerability Analysis in Network Infrastructure: A Systematic Literature Review. 593 Digital Publisher CEIT, 9(5), 527-542. https://doi.org/10.33386/593dp.2024.5.2620
Section
Artículos de revisión
Author Biographies

Edison Mauricio Cornejo-Jiménez , Pontificia Universidad Católica del Ecuador Sede Ambato - Ecuador

https://orcid.org/0009-0000-8735-3420

Computer Systems and Informatics Engineer and Master's student in Cybersecurity at Pontifical Catholic University of Ambato. Software Developer since 2023 for a frozen vegetable exporting company. Trained in networking, with two levels of CCNA completed. 

David Omar Guevara-Aulestia , Pontificia Universidad Católica del Ecuador Sede Ambato - Ecuador

https://orcid.org/0000-0002-0410-4398

Systems engineer  

Master in Networks and Telecommunications 

References

Akpinar, K. O., & Ozcelik, I. (2019). Analysis of Machine Learning Methods in EtherCAT-Based Anomaly Detection. IEEE Access, 7, 184365-184374. Scopus. https://doi.org/10.1109/ACCESS.2019.2960497

Alabady, S. A., Al-Turjman, F., & Din, S. (2020). A Novel Security Model for Cooperative Virtual Networks in the IoT Era. International Journal of Parallel Programming, 48(2), 280-295. Scopus. https://doi.org/10.1007/s10766-018-0580-z

Alarood, A., Ibrahim, A., & Alsubaei, F. (2023). Attacks Notification of Differentiated Services Code Point (DSCP) Values Modifications. IEEE Access, 11, 126950-126966. https://doi.org/10.1109/ACCESS.2023.3332119

Alhaidary, M., Rahman, S. M. M., Zakariah, M., Shamim Hossain, M., Alamri, A., Haque, M. S. M., & Gupta, B. B. (2018). Vulnerability Analysis for the Authentication Protocols in Trusted Computing Platforms and a Proposed Enhancement of the OffPAD Protocol. IEEE Access, 6, 6071-6081. Scopus. https://doi.org/10.1109/ACCESS.2017.2789301

Álvarez, Y., Leguizamón, M., & Londoño, T. (2021). Risks and security solutions existing in the Internet of things (IoT) in relation to Big Data. Ingeniería y Competitividad, 23, 1-13.

Astudillo, C., Carvajal, F., Carvallo, J., Crespo, E., Orellana, M., & Vintimilla, R. (2018). Acometer contra un ERP con Software Libre. Enfoque UTE, 9, 138-148.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, 80(4), 571-583. https://doi.org/10.1016/j.jss.2006.07.009

CISCO. (2023). What Is Network Infrastructure? Cisco. https://www.cisco.com/c/en/us/solutions/enterprise-networks/what-is-network-infrastructure.html

Codina, L. (2019, octubre 30). Scopus: Caracterización y guía de uso avanzado · Preparación, búsqueda y exportación de resultados. Lluís Codina. https://www.lluiscodina.com/scopus-analisis-guia-utilizacion/

Cueva, M., & Alvarado, D. (2017). Análisis de Certificados SSL/TLS gratuitos y su implementación como Mecanismo de seguridad en Servidores de Aplicación. Enfoque UTE, 8, 273-286.

Deola, E. (2023, febrero 4). Ataque Wanna Cry: La importancia de disponer de sistemas de seguridad actualizados. FlashStart. https://flashstart.com/es/el-ataque-wannacry-de-2017/

Fortra. (2022). Qué es el escaneo de vulnerabilidades y cómo funciona | Fortra Blog. https://www.fortra.com/es/blog/escaneo-vulnerabilidades

Gábor, L., & Sándor, R. (2014). Improving the Performance and Security of the TOTD DNS64 Implementation. Journal of Computer Science and Technology, 14, 9-15.

IBM Security. (2023). Cost of a Data Breach Report 2023. https://www.ibm.com/downloads/cas/E3G5JMBP

Ierardi, C., Orihuela, D. L., Jurado, I., Rodríguez, Á., & Tapia, A. (2017). Revisión sistemática de la literatura en ingeniería de sistemas. Caso práctico: Técnicas de estimación distribuida de sistemas ciberfísicos. Actas de las XXXVIII Jornadas de Automática, 2017, ISBN 978-84-16664-74-0, págs. 84-91, 84-91. https://dialnet.unirioja.es/servlet/articulo?codigo=6591559

Jacklin, B. (2024, febrero 21). AI Technology is Invaluable for Cybersecurity. Https://Www.Smartdatacollective.Com/. https://www.smartdatacollective.com/ai-technology-is-invaluable-for-cybersecurity/

Kholidy, H. (2022). Multi‐layer attack graph analysis in the 5g edge network using a dynamic hexagonal fuzzy method. Sensors, 22(1). Scopus. https://doi.org/10.3390/s22010009

Kim, H., Hwang, E., Kim, D., Cho, J., Moore, T. J., Nelson, F. F., & Lim, H. (2023). Time-Based Moving Target Defense Using Bayesian Attack Graph Analysis. IEEE Access, 1-1. Scopus. https://doi.org/10.1109/ACCESS.2023.3269018

Kubecka, M. (2020). Practical Cybersecurity Architecture: A guide to creating and implementing robust designs for cybersecurity architects (Packt Publishing).

Kumar, B. K., Raj, N., Dhivvya, J., & Muralidharan, D. (2019). Fixing Network Security Vulnerabilities in Local Area Network. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 1349-1354. https://doi.org/10.1109/ICOEI.2019.8862634

Li, J., Zhao, B., & Zhang, C. (2018). Fuzzing: A survey. Cybersecurity, 1(1), 6. https://doi.org/10.1186/s42400-018-0002-y

Limones, E. (2022, septiembre 23). Análisis de vulnerabilidades informáticas [Blog]. OpenWebinars.net. https://openwebinars.net/blog/analisis-de-vulnerabilidades-informaticas/

Luo, J., Shan, C., Cai, J., & Liu, Y. (2018). IoT application-layer protocol vulnerability detection using reverse engineering. Symmetry, 10(11). Scopus. https://doi.org/10.3390/sym10110561

Marcillo, M. P., Marcillo, J. C., Ortiz, M. M., & Mero, E. A. (2021). Análisis de las Herramientas y Técnicas utilizadas en prueba de penetración para la detección de vulnerabilidades en aplicaciones web. UNESUM - Ciencias. Revista Científica Multidisciplinaria, 5(1), Article 1. https://doi.org/10.47230/unesum-ciencias.v5.n3.2021.316

Milani, S., & Chatzigiannakis, I. (2021). Design, analysis, and experimental evaluation of a new secure rejoin mechanism for lorawan using elliptic-curve cryptography. Journal of Sensor and Actuator Networks, 10(2). Scopus. https://doi.org/10.3390/JSAN10020036

Molina, Y., & Orozco, L. G. (2020). Vulnerabilidades de los Sistemas de Información: Una revisión. https://dspace.tdea.edu.co/handle/tdea/1398

Navarro, G. (2011). Introducción a las vulnerabilidades. Universitat Oberta de Catalunya.

Nebbione, G., & Calzarossa, M. (2023). A Methodological Framework for AI-Assisted Security Assessments of Active Directory Environments. IEEE Access, 11, 15119-15130. Scopus. https://doi.org/10.1109/ACCESS.2023.3244490

Pando, F. (2023, junio 22). Haz un análisis de vulnerabilidades para tu empresa; cajas blanca y negra. IT Masters Mag. https://www.itmastersmag.com/noticias-analisis/analisis-de-vulnerabilidades-cual-es-su-importancia/

Pastorino, C. (2017). Aclarando KRACK Attack, la vulnerabilidad descubierta en WPA2. Welivesecurity. https://www.welivesecurity.com/la-es/2017/10/27/aclarando-krack-attack-wpa2/

Peng, Y. (2023). Research on the Technology of Computer Network Security Protection. Journal of Applied Data Sciences, 4(1), Article 1. https://doi.org/10.47738/jads.v4i1.80

Ramírez, G. A. (2023). Seguridad en desarrollo web: Mejores prácticas para proteger aplicaciones y datos. Dominio de las Ciencias, 9(3), Article 3. https://doi.org/10.23857/dc.v9i3.3552

Rouse, M. (2023, octubre 30). Network Infrastructure. Techopedia. https://www.techopedia.com/definition/16955/network-infrastructure

Sánchez, F., Martínez, J. E., & Téllez, A. (2022). La seguridad en el ciberespacio desde una perspectiva sociocultural. methaodos.revista de ciencias sociales, 10(2), Article 2. https://doi.org/10.17502/mrcs.v10i2.577

Shastry, B., Leutner, M., Fiebig, T., Thimmaraju, K., Yamaguchi, F., Rieck, K., Schmid, S., Seifert, J., & Feldmann, A. (2017). Static Program Analysis as a Fuzzing Aid. En M. Polychronakis, M. Antonakakis, M. Dacier, & M. Bailey (Eds.), Lect. Notes Comput. Sci.: Vol. 10453 LNCS (pp. 26-47). Springer Verlag; Scopus. https://doi.org/10.1007/978-3-319-66332-6_2

SolarWinds. (2023). What Is Network Infrastructure? All About Network Infrastructure - IT Glossary. https://www.solarwinds.com/resources/it-glossary/network-infrastructure

Zhang, Z., Zhang, H., Zhao, J., & Yin, Y. (2023). A Survey on the Development of Network Protocol Fuzzing Techniques. Electronics (Switzerland), 12(13). Scopus. https://doi.org/10.3390/electronics12132904

Zolanvari, M., Teixeira, M. A., Gupta, L., Khan, K. M., & Jain, R. (2019). Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things. IEEE Internet of Things Journal, 6(4), 6822-6834. Scopus. https://doi.org/10.1109/JIOT.2019.2912022