Ecuadorian feldspar characterization by instrumental analytical techniques and statistical calculation of uncertainty for the reliability of results

Main Article Content

Monica Alexandra Moreno-Barriga
Andrés Joao Noguera-Cundar
Lidia del Rocio Castro-Cepeda

Abstract

The objective of this study is to analyze and characterize a sample of an Ecuadorian feldspar, using DRX, SEM and TGA techniques, for the microstructural analysis of mineral phase and chemical composition. The qualitative and quantitative X-ray diffraction analysis through Rietveld refinement reveals that this feldspar is composed of 33.31% of Albite, 15.70% of Quartz and a large weight percentage of 50.99% of amorphous material . To validate these results, the uncertainty of the measurement was investigated and calculated, using a statistical analysis of standard deviation, resulting in an uncertainty error of ± 0.87wt%, ± 0.23wt% and ± 0.89wt% respectively for the percentages by weight of the minerals found in this anailysis. The result by SEM shows the presence of Albite in the feldspar exhibiting laminar twinning and characterized by spherical quartz and plagioclase inclusions that are randomly dispersed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Moreno, M., Noguera, A., & Castro, L. (2020). Ecuadorian feldspar characterization by instrumental analytical techniques and statistical calculation of uncertainty for the reliability of results. 593 Digital Publisher CEIT, 5(3), 154-164. https://doi.org/10.33386/593dp.2020.3.227
Section
Administration

References

Ahtee, M., Nurmela, M., Suortti, P., & Järvinen, M. (1989). Correction for preferred orientation in Rietveld refinement. Journal of Applied Crystallography, 22(3), 261-268. https://doi.org/10.1107/S0021889889000725

Bell, S. (1999). A Beginner’s Guide to Uncertainty of Measurement. Measurement Good Practice Guide, (2), 41. https://doi.org/10.1111/j.1468-3148.2007.00360.x

Ellison, S., Rosslein, M., & Williams, A. (2003). EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement,. Journal of Analytical Chemistry, 58(2), 191-191. https://doi.org/10.1023/A:1022374509064

Hradil, D., Bezdička, P., Hradilová, J., & Vašutová, V. (2016). Microanalysis of clay-based pigments in paintings by XRD techniques. Microchemical Journal, 125, 10-20. https://doi.org/10.1016/j.microc.2015.10.032

JCGM. (2008). JCGM 200: 2008 International vocabulary of metrology—Basic and general concepts and associated terms ( VIM ) Vocabulaire international de métrologie—Concepts fondamentaux et généraux et termes associés ( VIM ). International Organization for Standardization Geneva ISBN, 3(Vim), 104. https://doi.org/10.1016/0263-2241(85)90006-5

Joint Committee for Guides in Metrology. (2009). Evaluation of measurement data—An introduction to the “Guide to the expression of uncertainty in measurement” and related documents. (July), 28. https://doi.org/10.1016/0263-2241(85)90006-5

Joint Committee for Guides in Metrology (JCGM). (2008). Evaluation of measurement data: Guide to the expression of uncertainty in measurement. (September), 120. https://doi.org/10.1373/clinchem.2003.030528

Lewandowski, C. M., Co-investigator, N., & Lewandowski, C. M. (2015). Measurement Uncertainties/Physical Parameters and Calibration of Instruments. En The effects of brief mindfulness intervention on acute pain experience: An examination of individual difference (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004

McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., & Scardi, P. (1999). Rietveld refinement guidelines. Journal of Applied Crystallography, 32(1), 36-50. https://doi.org/10.1107/S0021889898009856

Parsons, I., Gerald, J. D. F., & Lee, M. R. (2015). Routine characterization and interpretation of complex alkali feldspar intergrowths. American Mineralogist, 100(5-6), 1277-1303. https://doi.org/10.2138/am-2015-5094

Rietveld, H. M. (2014). The Rietveld method. Physica Scripta, 89(9), 098002. https://doi.org/10.1088/0031-8949/89/9/098002

Santana, S. T., Khoury, H. J., Sullasi, H. L., & Guzzo, P. L. (2010). Luminescence properties of feldspars from the Northeast region of Brazil. Journal of Physics: Conference Series, 249, 012028. https://doi.org/10.1088/1742-6596/249/1/012028

Schwarzenbach, D., Abrahams, S. C., Flack, H. D., Prince, E., & Wilson, A. J. C. (1995). Statisical descriptions in crystallography. II. Report of a Working Group on Expression of Uncertainty in Measurement. Acta Crystallographica Section A: Foundations of Crystallography, 51(4), 565-569. https://doi.org/10.1107/S0108767395002340

Shim, S.-H., Kim, S. J., & Ahn, J. H. (1996). Quantitative analysis of alkali feldspar minerals using Rietveld refinement of X-ray diffraction data. American Mineralogist, 81(9-10), 1133-1140. Recuperado de https://asu.pure.elsevier.com/en/publications/quantitative-analysis-of-alkali-feldspar-minerals-using-rietveld-

Speakman, S. A. (2012). Introduction to PANalytical X’Pert HighScore Plus v3.0. (March), 1-19.

Toby, B. H. (2006). R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21(1), 67-70. https://doi.org/10.1154/1.2179804

Toraya, H., & Marumo, F. (1981). Preferred orientation correction in powder pattern-fitting. Mineralogical Journal, 10(5), 211-221. https://doi.org/10.2465/minerj.10.211

Yuan, B., Li, C., Liang, B., Lü, L., Yue, H., Sheng, H., … Xie, H. (2015). Extraction of potassium from K-feldspar via the CaCl2 calcination route. Chinese Journal of Chemical Engineering, 23(9), 1557-1564. https://doi.org/10.1016/j.cjche.2015.06.012

Most read articles by the same author(s)