Trends in artificial intelligence techniques, in the detection of computer crimes: Systematic Review of the Literature (SLR)

Main Article Content

Joseph Alberto Delgado-Indacochea
Roberth Abel Alcívar-Cevallos

Abstract

In this article, a Systematic Literature Review (SLR) is presented that focuses on the applications of Artificial Intelligence (AI) techniques for detecting cybercrimes. The first part of the review is dedicated to selecting the sources of information to be used, while the next section provides a detailed description of the research that has employed these AI techniques. During this research process, it was evident that the majority of the studies have used a variety of AI algorithms. Among the most frequent ones are SVM, Decision Tree, Logistic Regression, Naive Bayes, KNN, and Random Forest, which have demonstrated their effectiveness in multiple areas of cybersecurity, including intrusion detection, Denial of Service (DoS) attacks, phishing, and malware. In this context, it has been observed that XGBoost, Random Forest, and Logistic Regression stand out for their remarkable balance between precision and accuracy metrics. The findings emphasize the need to adapt the choice of algorithm according to the dataset and specific context, highlighting the importance of conducting meticulous tests and definitions. Finally, the results obtained from this review provide an enlightening guide that can guide decisions, offering readers a glimpse into the most promising techniques in areas that deserve greater attention, as well as exploration for future research. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Delgado-Indacochea, J. ., & Alcívar-Cevallos, R. . (2024). Trends in artificial intelligence techniques, in the detection of computer crimes: Systematic Review of the Literature (SLR). 593 Digital Publisher CEIT, 9(1), 810-830. https://doi.org/10.33386/593dp.2024.1.2184
Section
Investigaciones /estudios empíricos
Author Biographies

Joseph Alberto Delgado-Indacochea, Universidad Técnica de Manabí - Ecuador

https://orcid.org/0009-0009-2343-2643

Student of Information Systems Engineering, Faculty of Computer Science, Technical University of Manabí.

Roberth Abel Alcívar-Cevallos, Universidad Técnica de Manabí - Ecuador

https://orcid.org/0000-0001-6282-8493

Doctor in Engineering Sciences with a mention in computer science, Professor in the Information Technology Department, Faculty of Computer Sciences, Technical University of Manabí.

References

​​Advanced Persistent Threat Attack Detection using Clustering Algorithms—ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/e4cf78c9c76360df56db08e93dac95b2/1?pq-origsite=gscholar&cbl=5444811

​Alabdulkreem, E., Alotaibi, S., Alamgeer, M., Marzouk, R., Hilal, A., Motwakel, A., Zamani, A., Rizwanullah, M., & Mustafa, A. (2022). Intelligent Cybersecurity Classification Using Chaos Game Optimization with Deep Learning Model. Computer Systems Science and Engineering, 45, 971-983. https://doi.org/10.32604/csse.2023.030362

​An Empirical Study on Fake News Detection System using Deep and Machine Learning Ensemble Techniques—ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/afe7ca89f1656bc6daff1d157e23ea25/1?pq-origsite=gscholar&cbl=5444811

​Alarfaj, F. K., Malik, I., Khan, H. U., Almusallam, N., Ramzan, M., & Ahmed, M. (2022). Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms. IEEE Access, 10, 39700-39715. https://doi.org/10.1109/ACCESS.2022.3166891

​Al-Khater, W. A., Al-Maadeed, S., Ahmed, A. A., Sadiq, A. S., & Khan, M. K. (2020). Comprehensive Review of Cybercrime Detection Techniques. IEEE Access, 8, 137293-137311. https://doi.org/10.1109/ACCESS.2020.3011259

​Anomaly-based Network Intrusion Detection using Ensemble Machine Learning Approach—ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/d9d72dd1b72f456e91148e9657176137/1?pq-origsite=gscholar&cbl=5444811

​BCT-CS: Blockchain Technology Applications for Cyber Defense and Cybersecurity: A Survey and Solutions - ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/421f66c9054aaffb1ba624e83c2e3757/1?pq-origsite=gscholar&cbl=5444811

​Capuano, N., Fenza, G., Loia, V., & Stanzione, C. (2022). Explainable Artificial Intelligence in CyberSecurity: A Survey. IEEE Access, 10, 93575-93600. https://doi.org/10.1109/ACCESS.2022.3204171

​Ch, R., Gadekallu, T. R., Abidi, M. H., & Al-Ahmari, A. (2020). Computational System to Classify Cyber Crime Offenses Using Machine Learning. Sustainability, 12(4087), 4087. https://doi.org/10.3390/su12104087

​COVID-19 malicious domain names classification—ScienceDirect. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.sciencedirect.com/science/article/pii/S0957417422008715

​Department of Computer Science Engineering, Bhagwan Parshuram Institute of Technology, New Delhi-110089, India, Pandey, H., Goyal, R., Virmani, D., & Gupta, C. (2021). Ensem_SLDR: Classification of Cybercrime using Ensemble Learning Technique. International Journal of Computer Network and Information Security, 14(1), 81-90. https://doi.org/10.5815/ijcnis.2022.01.07

​Electronics | Free Full-Text | A Robust Forgery Detection Method for Copy–Move and Splicing Attacks in Images. (s. f.). Recuperado 7 de septiembre de 2023, de https://www.mdpi.com/2079-9292/9/9/1500

​Gawande, R., & Badotra, S. (2022). Deep-Learning Approach for Efficient Eye-blink Detection with Hybrid Optimization Concept. International Journal of Advanced Computer Science and Applications, 13(6). https://doi.org/10.14569/IJACSA.2022.0130693

​Gil, B., & Anyel, A. (2021). Challenges for the legal regulation of Artificial Intelligence in the field of Cybersecurity. Revista IUS, 15(48), 9-34. https://doi.org/10.35487/rius.v15i48.2021.705

​G. Zhao, P. Jia, C. Huang, A. Zhou, y Y. Fang, «A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks», IEEE Access, vol. 8, pp. 65462-65471, 2020, doi: 10.1109/ACCESS.2020.2984286.

​Halbouni, A., Gunawan, T. S., Habaebi, M. H., Halbouni, M., Kartiwi, M., & Ahmad, R. (2022). Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. IEEE Access, 10, 19572-19585. https://doi.org/10.1109/ACCESS.2022.3151248

​Hina, M., Ali, M., Javed, A. R., Ghabban, F., Khan, L. A., & Jalil, Z. (2021). SeFACED: Semantic-Based Forensic Analysis and Classification of E-Mail Data Using Deep Learning. IEEE Access, 9, 98398-98411. https://doi.org/10.1109/ACCESS.2021.3095730

​Kabla, A. H. H., Anbar, M., Manickam, S., & Karupayah, S. (2022). Eth-PSD: A Machine Learning-Based Phishing Scam Detection Approach in Ethereum. IEEE Access, 10, 118043-118057. https://doi.org/10.1109/ACCESS.2022.3220780

​Karim, A., Shahroz, M., Mustofa, K., Belhaouari, S. B., & Joga, S. R. K. (2023). Phishing Detection System Through Hybrid Machine Learning Based on URL. IEEE Access, 11, 36805-36822. https://doi.org/10.1109/ACCESS.2023.3252366

​Khan, F., Ncube, C., Ramasamy, L. K., Kadry, S., & Nam, Y. (2020). A Digital DNA Sequencing Engine for Ransomware Detection Using Machine Learning. IEEE Access, 8, 119710-119719. https://doi.org/10.1109/ACCESS.2020.3003785

​Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. 2.

​Larriva-Novo, X. A., Vega-Barbas, M., Villagrá, V. A., & Sanz Rodrigo, M. (2020). Evaluation of Cybersecurity Data Set Characteristics for Their Applicability to Neural Networks Algorithms Detecting Cybersecurity Anomalies. IEEE Access, 8, 9005-9014. https://doi.org/10.1109/ACCESS.2019.2963407

​Liu, Q., Li, P., Zhao, W., Cai, W., Yu, S., & Leung, V. C. M. (2018). A Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View. IEEE Access, 6, 12103-12117. https://doi.org/10.1109/ACCESS.2018.2805680

​Loor-Zambrano, B., Tello-Salvador, F., Alcivar-Cevallos, R., & Vaca-Cardenas, L. (2021). Approaches of predictive and clustering methods used in emergency events: A Systematic Literature Review. 2021 XLVII Latin American Computing Conference (CLEI), 1-8. https://doi.org/10.1109/CLEI53233.2021.9640022

​Luna-López, M., Hernández-Lozano, M., Aldana-Franco, R., Alvarez Sanchez, E., Leyva-Retureta, J., Ricaño-Herrera, F., & Aldana-Franco, F. (2021). Sistema inteligente de monitoreo para condiciones ambientales en Industria 4.0. Científica, 25, 1-10. https://doi.org/10.46842//ipn.cien.v25n2a07

​Mahfouz, A., Abuhussein, A., Alsubaei, F., & Shiva, S. (2022). Toward A Holistic, Efficient, Stacking Ensemble Intrusion Detection System using a Real Cloud-based Dataset. International Journal of Advanced Computer Science and Applications, 13, 2022. https://doi.org/10.14569/IJACSA.2022.01309110

​Masadeh, M., Davanager, H., & Muaad, A. Y. (2022). A Novel Machine Learning-Based Framework for Detecting Religious Arabic Hatred Speech in Social Networks. International Journal of Advanced Computer Science and Applications, 13, 2022. https://doi.org/10.14569/IJACSA.2022.0130991

​Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M.-S., & Zeineddine, H. (2019). An Experimental Study With Imbalanced Classification Approaches for Credit Card Fraud Detection. IEEE Access, 7, 93010-93022. https://doi.org/10.1109/ACCESS.2019.2927266

​Massaro, A., Gargaro, M., Dipierro, G., Galiano, A. M., & Buonopane, S. (2020). Prototype Cross Platform Oriented on Cybersecurity, Virtual Connectivity, Big Data and Artificial Intelligence Control. IEEE Access, 8, 197939-197954. https://doi.org/10.1109/ACCESS.2020.3034399

​Nahhas, L., Albahar, M., Alammari, A., & Jurcut, A. (2022). Android Malware Detection Using ResNet-50 Stacking. Computers, Materials & Continua, 74(2), 3997-4014. https://doi.org/10.32604/cmc.2023.028316

​Ordoñez-Tumbo, S., Márceles-Villalba, K., Amador-Donado, S., Ordoñez-Tumbo, S., Márceles-Villalba, K., & Amador-Donado, S. (2022). An adaptable Intelligence Algorithm to a Cybersecurity Framework for IIOT. Ingeniería y Competitividad, 24(2). https://doi.org/10.25100/iyc.v24i2.11762

​Otoom, M. M., Sattar, K. N. A., & Al Sadig, M. (2023). Ensemble Model for Network Intrusion Detection System Based on Bagging Using J48. Advances in Science and Technology. Research Journal, Vol. 17(no 2). https://doi.org/10.12913/22998624/161820

​Prabha, P. S., & Kumar, S. M. (2022). A Novel Cyber-attack Leads Prediction System using Cascaded R2CNN Model. International Journal of Advanced Computer Science and Applications, 13(2). https://doi.org/10.14569/IJACSA.2022.0130260

​Predicting Malicious Software in IoT Environment Based on Machine Learning and Data Mining Techniques—ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/ad34f3c57aa402f75d6047227dbce013/1?pq-origsite=gscholar&cbl=5444811

​Rizvi, S., Scanlon, M., Mcgibney, J., & Sheppard, J. (2022). Application of Artificial Intelligence to Network Forensics: Survey, Challenges and Future Directions. IEEE Access, 10, 110362-110384. https://doi.org/10.1109/ACCESS.2022.3214506

​Sensors | Free Full-Text | An Insight into the Machine-Learning-Based Fileless Malware Detection. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.mdpi.com/1424-8220/23/2/612

​Sun, B., Ban, T., Han, C., Takahashi, T., Yoshioka, K., Takeuchi, J., Sarrafzadeh, A., Qiu, M., & Inoue, D. (2021). Leveraging Machine Learning Techniques to Identify Deceptive Decoy Documents Associated With Targeted Email Attacks. IEEE Access, 9, 87962-87971. https://doi.org/10.1109/ACCESS.2021.3082000

​T. Mosa, D., Y. Shams, M., A. Abohany, A., M. El-kenawy, E.-S., & Thabet, M. (2023). Machine Learning Techniques for Detecting Phishing URL Attacks. Computers, Materials & Continua, 75(1), 1271-1290. https://doi.org/10.32604/cmc.2023.036422

​Veena, K., Meena, K., Kuppusamy, R., Teekaraman, Y., Angadi, R. V., & Thelkar, A. R. (2022). Cybercrime: Identification and Prediction Using Machine Learning Techniques. Computational Intelligence and Neuroscience, 2022, e8237421. https://doi.org/10.1155/2022/8237421

​Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., & Venkatraman, S. (2019). Robust Intelligent Malware Detection Using Deep Learning. IEEE Access, 7, 46717-46738. https://doi.org/10.1109/ACCESS.2019.2906934

​Wan Ali, W. N. H., Mohd, M., Fauzi, F., Shirai, K., & Noor, M. (2021). IMPLEMENTATION OF HYPERPARAMETER OPTIMISATION AND OVER-SAMPLING IN DETECTING CYBERBULLYING USING MACHINE LEARNING APPROACH. Malaysian Journal of Computer Science, 78-100. https://doi.org/10.22452/mjcs.sp2021no2.6

​Wei, Y., & Sekiya, Y. (2022). Sufficiency of Ensemble Machine Learning Methods for Phishing Websites Detection. IEEE Access, 10, 124103-124113. https://doi.org/10.1109/ACCESS.2022.3224781

​Wiafe, I., Koranteng, F. N., Obeng, E. N., Assyne, N., Wiafe, A., & Gulliver, S. R. (2020). Artificial Intelligence for Cybersecurity: A Systematic Mapping of Literature. IEEE Access, 8, 146598-146612. https://doi.org/10.1109/ACCESS.2020.3013145

​Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access, 6, 35365-35381. https://doi.org/10.1109/ACCESS.2018.2836950

​Yuan, J., Chen, G., Tian, S., & Pei, X. (2021). Malicious URL Detection Based on a Parallel Neural Joint Model. IEEE Access, 9, 9464-9472. https://doi.org/10.1109/ACCESS.2021.3049625

​Zeadally, S., Adi, E., Baig, Z., & Khan, I. A. (2020). Harnessing Artificial Intelligence Capabilities to Improve Cybersecurity. IEEE Access, 8, 23817-23837. https://doi.org/10.1109/ACCESS.2020.2968045

​Zhang, S., Xie, X., & Xu, Y. (2020). A Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity. IEEE Access, 8, 128250-128263. https://doi.org/10.1109/ACCESS.2020.3008433

​Zieni, R., Massari, L., & Calzarossa, M. C. (2023). Phishing or Not Phishing? A Survey on the Detection of Phishing Websites. IEEE Access, 11, 18499-18519. https://doi.org/10.1109/ACCESS.2023.3247135

​​​