Trends in artificial intelligence techniques, in the detection of computer crimes: Systematic Review of the Literature (SLR)
Main Article Content
Abstract
In this article, a Systematic Literature Review (SLR) is presented that focuses on the applications of Artificial Intelligence (AI) techniques for detecting cybercrimes. The first part of the review is dedicated to selecting the sources of information to be used, while the next section provides a detailed description of the research that has employed these AI techniques. During this research process, it was evident that the majority of the studies have used a variety of AI algorithms. Among the most frequent ones are SVM, Decision Tree, Logistic Regression, Naive Bayes, KNN, and Random Forest, which have demonstrated their effectiveness in multiple areas of cybersecurity, including intrusion detection, Denial of Service (DoS) attacks, phishing, and malware. In this context, it has been observed that XGBoost, Random Forest, and Logistic Regression stand out for their remarkable balance between precision and accuracy metrics. The findings emphasize the need to adapt the choice of algorithm according to the dataset and specific context, highlighting the importance of conducting meticulous tests and definitions. Finally, the results obtained from this review provide an enlightening guide that can guide decisions, offering readers a glimpse into the most promising techniques in areas that deserve greater attention, as well as exploration for future research.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Derechos de autor
Las obras que se publican en 593 Digital Publisher CEIT están sujetas a los siguientes términos:
1.1. 593 Digital Publisher CEIT, conserva los derechos patrimoniales (copyright) de las obras publicadas, favorece y permite la reutilización de las mismas bajo la licencia Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0, por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
1.1.a. Se cite la autoría y fuente original de su publicación (revista, editorial, URL).
1.1.b. No se usen para fines comerciales u onerosos.
1.1.c. Se mencione la existencia y especificaciones de esta licencia de uso.
References
Advanced Persistent Threat Attack Detection using Clustering Algorithms—ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/e4cf78c9c76360df56db08e93dac95b2/1?pq-origsite=gscholar&cbl=5444811
Alabdulkreem, E., Alotaibi, S., Alamgeer, M., Marzouk, R., Hilal, A., Motwakel, A., Zamani, A., Rizwanullah, M., & Mustafa, A. (2022). Intelligent Cybersecurity Classification Using Chaos Game Optimization with Deep Learning Model. Computer Systems Science and Engineering, 45, 971-983. https://doi.org/10.32604/csse.2023.030362
An Empirical Study on Fake News Detection System using Deep and Machine Learning Ensemble Techniques—ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/afe7ca89f1656bc6daff1d157e23ea25/1?pq-origsite=gscholar&cbl=5444811
Alarfaj, F. K., Malik, I., Khan, H. U., Almusallam, N., Ramzan, M., & Ahmed, M. (2022). Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms. IEEE Access, 10, 39700-39715. https://doi.org/10.1109/ACCESS.2022.3166891
Al-Khater, W. A., Al-Maadeed, S., Ahmed, A. A., Sadiq, A. S., & Khan, M. K. (2020). Comprehensive Review of Cybercrime Detection Techniques. IEEE Access, 8, 137293-137311. https://doi.org/10.1109/ACCESS.2020.3011259
Anomaly-based Network Intrusion Detection using Ensemble Machine Learning Approach—ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/d9d72dd1b72f456e91148e9657176137/1?pq-origsite=gscholar&cbl=5444811
BCT-CS: Blockchain Technology Applications for Cyber Defense and Cybersecurity: A Survey and Solutions - ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/421f66c9054aaffb1ba624e83c2e3757/1?pq-origsite=gscholar&cbl=5444811
Capuano, N., Fenza, G., Loia, V., & Stanzione, C. (2022). Explainable Artificial Intelligence in CyberSecurity: A Survey. IEEE Access, 10, 93575-93600. https://doi.org/10.1109/ACCESS.2022.3204171
Ch, R., Gadekallu, T. R., Abidi, M. H., & Al-Ahmari, A. (2020). Computational System to Classify Cyber Crime Offenses Using Machine Learning. Sustainability, 12(4087), 4087. https://doi.org/10.3390/su12104087
COVID-19 malicious domain names classification—ScienceDirect. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.sciencedirect.com/science/article/pii/S0957417422008715
Department of Computer Science Engineering, Bhagwan Parshuram Institute of Technology, New Delhi-110089, India, Pandey, H., Goyal, R., Virmani, D., & Gupta, C. (2021). Ensem_SLDR: Classification of Cybercrime using Ensemble Learning Technique. International Journal of Computer Network and Information Security, 14(1), 81-90. https://doi.org/10.5815/ijcnis.2022.01.07
Electronics | Free Full-Text | A Robust Forgery Detection Method for Copy–Move and Splicing Attacks in Images. (s. f.). Recuperado 7 de septiembre de 2023, de https://www.mdpi.com/2079-9292/9/9/1500
Gawande, R., & Badotra, S. (2022). Deep-Learning Approach for Efficient Eye-blink Detection with Hybrid Optimization Concept. International Journal of Advanced Computer Science and Applications, 13(6). https://doi.org/10.14569/IJACSA.2022.0130693
Gil, B., & Anyel, A. (2021). Challenges for the legal regulation of Artificial Intelligence in the field of Cybersecurity. Revista IUS, 15(48), 9-34. https://doi.org/10.35487/rius.v15i48.2021.705
G. Zhao, P. Jia, C. Huang, A. Zhou, y Y. Fang, «A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks», IEEE Access, vol. 8, pp. 65462-65471, 2020, doi: 10.1109/ACCESS.2020.2984286.
Halbouni, A., Gunawan, T. S., Habaebi, M. H., Halbouni, M., Kartiwi, M., & Ahmad, R. (2022). Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. IEEE Access, 10, 19572-19585. https://doi.org/10.1109/ACCESS.2022.3151248
Hina, M., Ali, M., Javed, A. R., Ghabban, F., Khan, L. A., & Jalil, Z. (2021). SeFACED: Semantic-Based Forensic Analysis and Classification of E-Mail Data Using Deep Learning. IEEE Access, 9, 98398-98411. https://doi.org/10.1109/ACCESS.2021.3095730
Kabla, A. H. H., Anbar, M., Manickam, S., & Karupayah, S. (2022). Eth-PSD: A Machine Learning-Based Phishing Scam Detection Approach in Ethereum. IEEE Access, 10, 118043-118057. https://doi.org/10.1109/ACCESS.2022.3220780
Karim, A., Shahroz, M., Mustofa, K., Belhaouari, S. B., & Joga, S. R. K. (2023). Phishing Detection System Through Hybrid Machine Learning Based on URL. IEEE Access, 11, 36805-36822. https://doi.org/10.1109/ACCESS.2023.3252366
Khan, F., Ncube, C., Ramasamy, L. K., Kadry, S., & Nam, Y. (2020). A Digital DNA Sequencing Engine for Ransomware Detection Using Machine Learning. IEEE Access, 8, 119710-119719. https://doi.org/10.1109/ACCESS.2020.3003785
Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. 2.
Larriva-Novo, X. A., Vega-Barbas, M., Villagrá, V. A., & Sanz Rodrigo, M. (2020). Evaluation of Cybersecurity Data Set Characteristics for Their Applicability to Neural Networks Algorithms Detecting Cybersecurity Anomalies. IEEE Access, 8, 9005-9014. https://doi.org/10.1109/ACCESS.2019.2963407
Liu, Q., Li, P., Zhao, W., Cai, W., Yu, S., & Leung, V. C. M. (2018). A Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View. IEEE Access, 6, 12103-12117. https://doi.org/10.1109/ACCESS.2018.2805680
Loor-Zambrano, B., Tello-Salvador, F., Alcivar-Cevallos, R., & Vaca-Cardenas, L. (2021). Approaches of predictive and clustering methods used in emergency events: A Systematic Literature Review. 2021 XLVII Latin American Computing Conference (CLEI), 1-8. https://doi.org/10.1109/CLEI53233.2021.9640022
Luna-López, M., Hernández-Lozano, M., Aldana-Franco, R., Alvarez Sanchez, E., Leyva-Retureta, J., Ricaño-Herrera, F., & Aldana-Franco, F. (2021). Sistema inteligente de monitoreo para condiciones ambientales en Industria 4.0. Científica, 25, 1-10. https://doi.org/10.46842//ipn.cien.v25n2a07
Mahfouz, A., Abuhussein, A., Alsubaei, F., & Shiva, S. (2022). Toward A Holistic, Efficient, Stacking Ensemble Intrusion Detection System using a Real Cloud-based Dataset. International Journal of Advanced Computer Science and Applications, 13, 2022. https://doi.org/10.14569/IJACSA.2022.01309110
Masadeh, M., Davanager, H., & Muaad, A. Y. (2022). A Novel Machine Learning-Based Framework for Detecting Religious Arabic Hatred Speech in Social Networks. International Journal of Advanced Computer Science and Applications, 13, 2022. https://doi.org/10.14569/IJACSA.2022.0130991
Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M.-S., & Zeineddine, H. (2019). An Experimental Study With Imbalanced Classification Approaches for Credit Card Fraud Detection. IEEE Access, 7, 93010-93022. https://doi.org/10.1109/ACCESS.2019.2927266
Massaro, A., Gargaro, M., Dipierro, G., Galiano, A. M., & Buonopane, S. (2020). Prototype Cross Platform Oriented on Cybersecurity, Virtual Connectivity, Big Data and Artificial Intelligence Control. IEEE Access, 8, 197939-197954. https://doi.org/10.1109/ACCESS.2020.3034399
Nahhas, L., Albahar, M., Alammari, A., & Jurcut, A. (2022). Android Malware Detection Using ResNet-50 Stacking. Computers, Materials & Continua, 74(2), 3997-4014. https://doi.org/10.32604/cmc.2023.028316
Ordoñez-Tumbo, S., Márceles-Villalba, K., Amador-Donado, S., Ordoñez-Tumbo, S., Márceles-Villalba, K., & Amador-Donado, S. (2022). An adaptable Intelligence Algorithm to a Cybersecurity Framework for IIOT. Ingeniería y Competitividad, 24(2). https://doi.org/10.25100/iyc.v24i2.11762
Otoom, M. M., Sattar, K. N. A., & Al Sadig, M. (2023). Ensemble Model for Network Intrusion Detection System Based on Bagging Using J48. Advances in Science and Technology. Research Journal, Vol. 17(no 2). https://doi.org/10.12913/22998624/161820
Prabha, P. S., & Kumar, S. M. (2022). A Novel Cyber-attack Leads Prediction System using Cascaded R2CNN Model. International Journal of Advanced Computer Science and Applications, 13(2). https://doi.org/10.14569/IJACSA.2022.0130260
Predicting Malicious Software in IoT Environment Based on Machine Learning and Data Mining Techniques—ProQuest. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.proquest.com/openview/ad34f3c57aa402f75d6047227dbce013/1?pq-origsite=gscholar&cbl=5444811
Rizvi, S., Scanlon, M., Mcgibney, J., & Sheppard, J. (2022). Application of Artificial Intelligence to Network Forensics: Survey, Challenges and Future Directions. IEEE Access, 10, 110362-110384. https://doi.org/10.1109/ACCESS.2022.3214506
Sensors | Free Full-Text | An Insight into the Machine-Learning-Based Fileless Malware Detection. (s. f.). Recuperado 6 de septiembre de 2023, de https://www.mdpi.com/1424-8220/23/2/612
Sun, B., Ban, T., Han, C., Takahashi, T., Yoshioka, K., Takeuchi, J., Sarrafzadeh, A., Qiu, M., & Inoue, D. (2021). Leveraging Machine Learning Techniques to Identify Deceptive Decoy Documents Associated With Targeted Email Attacks. IEEE Access, 9, 87962-87971. https://doi.org/10.1109/ACCESS.2021.3082000
T. Mosa, D., Y. Shams, M., A. Abohany, A., M. El-kenawy, E.-S., & Thabet, M. (2023). Machine Learning Techniques for Detecting Phishing URL Attacks. Computers, Materials & Continua, 75(1), 1271-1290. https://doi.org/10.32604/cmc.2023.036422
Veena, K., Meena, K., Kuppusamy, R., Teekaraman, Y., Angadi, R. V., & Thelkar, A. R. (2022). Cybercrime: Identification and Prediction Using Machine Learning Techniques. Computational Intelligence and Neuroscience, 2022, e8237421. https://doi.org/10.1155/2022/8237421
Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., & Venkatraman, S. (2019). Robust Intelligent Malware Detection Using Deep Learning. IEEE Access, 7, 46717-46738. https://doi.org/10.1109/ACCESS.2019.2906934
Wan Ali, W. N. H., Mohd, M., Fauzi, F., Shirai, K., & Noor, M. (2021). IMPLEMENTATION OF HYPERPARAMETER OPTIMISATION AND OVER-SAMPLING IN DETECTING CYBERBULLYING USING MACHINE LEARNING APPROACH. Malaysian Journal of Computer Science, 78-100. https://doi.org/10.22452/mjcs.sp2021no2.6
Wei, Y., & Sekiya, Y. (2022). Sufficiency of Ensemble Machine Learning Methods for Phishing Websites Detection. IEEE Access, 10, 124103-124113. https://doi.org/10.1109/ACCESS.2022.3224781
Wiafe, I., Koranteng, F. N., Obeng, E. N., Assyne, N., Wiafe, A., & Gulliver, S. R. (2020). Artificial Intelligence for Cybersecurity: A Systematic Mapping of Literature. IEEE Access, 8, 146598-146612. https://doi.org/10.1109/ACCESS.2020.3013145
Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access, 6, 35365-35381. https://doi.org/10.1109/ACCESS.2018.2836950
Yuan, J., Chen, G., Tian, S., & Pei, X. (2021). Malicious URL Detection Based on a Parallel Neural Joint Model. IEEE Access, 9, 9464-9472. https://doi.org/10.1109/ACCESS.2021.3049625
Zeadally, S., Adi, E., Baig, Z., & Khan, I. A. (2020). Harnessing Artificial Intelligence Capabilities to Improve Cybersecurity. IEEE Access, 8, 23817-23837. https://doi.org/10.1109/ACCESS.2020.2968045
Zhang, S., Xie, X., & Xu, Y. (2020). A Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity. IEEE Access, 8, 128250-128263. https://doi.org/10.1109/ACCESS.2020.3008433
Zieni, R., Massari, L., & Calzarossa, M. C. (2023). Phishing or Not Phishing? A Survey on the Detection of Phishing Websites. IEEE Access, 11, 18499-18519. https://doi.org/10.1109/ACCESS.2023.3247135