Analysis of the academic performance of students of the Economics and Tourism majors with Power BI in the periods (2021)

Main Article Content

Johnny Samuel Saltos-Mero
Marely Del Rosario Cruz-Felipe

Abstract

In the university world, there is great relevance in obtaining precise data where academic performance of students can be evaluated since it is a topic of great interest. Many times, the process becomes a bit tedious and complicated to reach a study object. The advantage of using tools for the analysis of academic performance of students is that it provides objective and precise data, which allows identifying areas of improvement, taking measures to address them, quick and efficiently dealing with processes required to handle large flows of data. The selected methodology, CRISP-DM, includes the execution of six stages: understanding the business, understanding the data, data preparation, modeling stages, evaluation, and deployment. Once the database is analyzed, variables and data filters are defined, and finally, the execution of automatic learning algorithms (Decision Tree, Random Forests, Neural Networks, Support Vector Machine) is carried out to obtain academic performance of students using Python language. The objective of this article is to perform an analysis of academic performance in Economics and Tourism students at the Technical University of Manabi for which different algorithms were evaluated, obtaining that the most efficient algorithm is the Random Forest giving precise values, allowing to obtain a dashboard with student statistics. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Saltos-Mero, J. ., & Cruz-Felipe, M. (2024). Analysis of the academic performance of students of the Economics and Tourism majors with Power BI in the periods (2021). 593 Digital Publisher CEIT, 9(1), 762-772. https://doi.org/10.33386/593dp.2024.1.2162
Section
Investigaciones /estudios empíricos
Author Biographies

Johnny Samuel Saltos-Mero, Universidad Técnica de Manabí - Ecuador

https://orcid.org/0000-0002-9454-3633

Student of Information Systems Engineering, Faculty of Computer Science, Technical University of Manabí.

Marely Del Rosario Cruz-Felipe, Universidad Técnica de Manabí - Ecuador

https://orcid.org/0000-0003-1937-1568

Instructor in the Department of Information Technology, Faculty of Computer Science, Technical University of Manabí

References

Martos, S. (2018). Visualización y análisis de métricas de desarrollo y mantenimiento en productos software. Etsinf, 64.

Arteaga, W., & Sandoval, J. P. (2018). Factores que intervienen en el rendimiento académico en la Universidad. Acta Nova.

Basto, R. (2017). La función docente y el rendimiento académico: Una aportación al estado del conocimiento. Comie.

Bedregal, N., Tupacyupanqui, D., & Cornejo, V. (2020). Análisis del rendimiento académico de los estudiantes de Ingeniería de Sistemas, posibilidades de deserción y propuestas para su retención. Ingeniare.

Céspedes, B. (2022). Aplicación del algoritmo del bosque aleatorio a un modelo de clasificación de la anemia en niños peruanos. Mediciego.

Díaz, M., Ahumada, M. d., & Melo, J. (2021). Árboles de Decisión como Metodología para Determinar el Rendimiento Académico en Educación Superior. Unilasallista.

Galo Flores, J. C. (2019). Minería de datos como herramienta estratégica. Revista Científica Mundo de la Investigación y el Conocimiento.

Parra, J., Rincon, M., & Romero, D. (2019). Propuesta de inteligencia de negocios mediante la herramienta microsoft Power Bi como Soporte para la toma de decisiones del área comercial de la empresa Abc Manufacturera de Productos Plásticos. Poli.

Recarey, R. (2020). Métodos de ensamblado en Machine Learning. Universidad de Santiago de Compostela.

Rodriguez, J., & Rodriguez, S. (2022). Uso de Python para el análisis de datos aplicado en la investigación. Incaing.

Eckerson, W. W., Hanlon, N., & Barquin, R. (2000). DIRECTOR OF EDUCATION AND RESEARCH. 5(4).

Yañez Cabrejas, R. (2022). Aprendizaje automático: estado de la cuestión y casos de

estudio. Universidad Politécnica de Madrid.

O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and

threatens democracy. Crown Publishing Group.