Application of Gene Editing Technology as a Treatment Alternative for HIV Patients

Main Article Content

Paola Alexandra Cabrera-Ávila
Freddy Damian Castillo-Solano
Carlos Enrique Flores-Montesinos

Abstract

Human immunodeficiency virus (HIV) is characterized by progressively damaging the immune system, which is why therapeutic methods have been developed over the years to alleviate the symptoms presented by patients. However, these methods do not eradicate the disease. Gene therapy is a promising alternative when it comes to virus eradication, as it proposes gene editing to eliminate the virus from the cell. 


Currently, new therapeutic strategies are being explored, such as the use of gene editing technology, to reduce viral replication and eliminate HIV from the human genome. 


Improving adherence to antiretroviral treatment (ART) is important, and the impact of side effects on adherence is being reviewed. Knowledge about ART can moderate the relationship between side effects and adherence. 


In general, the findings of this review suggest that continuous research is necessary to find alternative HIV treatments and improve the quality of life for people living with this disease. The new therapeutic strategies show promise, but further studies are needed to evaluate their safety and efficacy. Improving adherence to ART remains a significant challenge, and effective interventions are needed to enhance adherence and prevent drug resistance. 


In conclusion, the findings suggest that gene therapies have great potential to improve the quality of life for people living with HIV/AIDS and enhance the effectiveness of antiretroviral treatment. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Cabrera-Ávila , P. ., Castillo-Solano , F. ., & Flores-Montesinos , C. . (2023). Application of Gene Editing Technology as a Treatment Alternative for HIV Patients . 593 Digital Publisher CEIT, 8(5), 96-109. https://doi.org/10.33386/593dp.2023.5.2001
Section
Investigaciones /estudios empíricos
Author Biographies

Paola Alexandra Cabrera-Ávila , Universidad Católica de Cuenca - Ecuador

https://orcid.org/0000-0001-9162-2064

My name is Paola Alexandra Cabrera Ávila. I was born in Gualaceo, a canton in the province of Azuay, Ecuador. I'm 23 years old and I'm a final year medical student at the Catholic University of Cuenca. For two years, I belonged to the Association of Medical Students for Projects and Exchanges (AEMPPI), serving as a local officer for medical education and a local officer for human rights and peace. 

Freddy Damian Castillo-Solano , Universidad Católica de Cuenca - Ecuador

https://orcid.org/0000-0002-8069-6161

I was born in the city of Loja, Ecuador, I did my undergraduate studies at the Universidad Técnica Particular de Loja obtaining the title of Pharmaceutical Biochemist, then I did my graduate studies at the State University of Guayaquil obtaining the title of Master in Molecular Biotechnology, conducting research "Profile of Virulence Genes in Pseudomonas aeruginosa", I have performed activities in the Ministry of Public Health as a technician of the Department of Control and Sanitary Surveillance, experience in the area of Clinical Diagnostic Laboratory of Seguro Social Campesino of IESS and Technical Representative of Molecular Biology Laboratory for SARS Diagnosis. Collaborator in the PCA3 Project as a Prostate Cancer Marker -UCACUE, currently working as a professor of Molecular Biology and Genetics at the Catholic University of Cuenca.

Carlos Enrique Flores-Montesinos , Universidad Católica de Cuenca - Ecuador

https://orcid.org/0000-0002-2528-8069

Medical surgeon graduated from the Faculty of Medicine of the Catholic University of Cuenca, specialized in internal medicine and infectious diseases from the University of Chile - Chile.I am a specialist in university teaching at UCACUE. I am an expert in Problem-Based Learning at the University of Leicester - England. I have been a professor at UCACUE in the Medicine career for 21 years. 

I have been a treating physician at a private hospital in the field of internal medicine and infectious diseases for 30 years. 

References

​​Arts, E. J., & Hazuda, D. J. (2012). HIV-1 antiretroviral drug therapy. Cold Spring Harbor Perspectives in Medicine, 2(4). https://doi.org/10.1101/CSHPERSPECT.A007161

​Ayala-Suárez, R., Díez-Fuertes, F., Calonge, E., Tarazona, H. E. D. L. T., de Alda, M. G. R., Capa, L., & Alcamí, J. (2020). Insight in miRNome of Long-Term Non-Progressors and Elite Controllers Exposes Potential RNAi Role in Restraining HIV-1 Infection. Journal of Clinical Medicine, 9(8), 1–20. https://doi.org/10.3390/JCM9082452

​Baltimore, D. (1988). Intracellular immunization. Nature 1988 335:6189, 335(6189), 395–396. https://doi.org/10.1038/335395a0

​Bobbin, M. L., Burnett, J. C., & Rossi, J. J. (2015). RNA interference approaches for treatment of HIV-1 infection. Genome Medicine, 7(1). https://doi.org/10.1186/S13073-015-0174-Y

​Can Gene Therapy Cure AIDS? | Science | AAAS. (n.d.). Retrieved December 6, 2022, from https://www.science.org/content/article/can-gene-therapy-cure-aids

​Cary, D. C., Fujinaga, K., & Peterlin, B. M. (2016). Molecular mechanisms of HIV latency. The Journal of Clinical Investigation, 126(2), 448. https://doi.org/10.1172/JCI80565

​Castro-Gonzalez, S., Colomer-Lluch, M., & Serra-Moreno, R. (2018). Barriers for HIV Cure: The Latent Reservoir. AIDS Research and Human Retroviruses, 34(9), 739–759. https://doi.org/10.1089/AID.2018.0118

​Chao, T. C., Zhang, Q., Li, Z., Tiwari, S. K., Qin, Y., Yau, E., Sanchez, A., Singh, G., Chang, K., Kaul, M., Karris, M. A. Y., & Ranaa, T. M. (2019a). The Long Noncoding RNA HEAL Regulates HIV-1 Replication through Epigenetic Regulation of the HIV-1 Promoter. MBio, 10(5). https://doi.org/10.1128/MBIO.02016-19

​Chao, T. C., Zhang, Q., Li, Z., Tiwari, S. K., Qin, Y., Yau, E., Sanchez, A., Singh, G., Chang, K., Kaul, M., Karris, M. A. Y., & Ranaa, T. M. (2019b). The Long Noncoding RNA HEAL Regulates HIV-1 Replication through Epigenetic Regulation of the HIV-1 Promoter. MBio, 10(5). https://doi.org/10.1128/MBIO.02016-19

​Chattong, S., Chaikomon, K., Chaiya, T., Tangkosakul, T., Palavutitotai, N., Anusornvongchai, T., & Manotham, K. (2018). Efficient ZFN-Mediated Stop Codon Integration into the CCR5 Locus in Hematopoietic Stem Cells: A Possible Source for Intrabone Marrow Cell Transplantation. AIDS Research and Human Retroviruses, 34(7), 575–579. https://doi.org/10.1089/AID.2018.0007

​Choi, J. G., Bharaj, P., Abraham, S., Ma, H., Yi, G., Ye, C., Dang, Y., Manjunath, N., Wu, H., & Shankar, P. (2015). Multiplexing seven miRNA-Based shRNAs to suppress HIV replication. Molecular Therapy : The Journal of the American Society of Gene Therapy, 23(2), 310–320. https://doi.org/10.1038/MT.2014.205

​Chun, T. W., Moir, S., & Fauci, A. S. (2015). HIV reservoirs as obstacles and opportunities for an HIV cure. Nature Immunology, 16(6), 584–589. https://doi.org/10.1038/NI.3152

​Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: prospects and challenges. Nature Medicine 2015 21:2, 21(2), 121–131. https://doi.org/10.1038/nm.3793

​Dai, W., Wu, F., McMyn, N., Song, B., Walker-Sperling, V. E., Varriale, J., Zhang, H., Barouch, D. H., Siliciano, J. D., Li, W., & Siliciano, R. F. (2022). Genome-wide CRISPR screens identify combinations of candidate latency reversing agents for targeting the latent HIV-1 reservoir. Science Translational Medicine, 14(667), eabh3351. https://doi.org/10.1126/SCITRANSLMED.ABH3351

​Douek, D. C. (2018). HIV Infection: Advances Toward a Cure. Topics in Antiviral Medicine, 25(4), 121. /pmc/articles/PMC5935215/

​Ecuador | ONUSIDA. (n.d.). Retrieved November 11, 2022, from https://www.unaids.org/es/regionscountries/countries/ecuador

​Gaj, T., Staahl, B. T., Rodrigues, G. M. C., Limsirichai, P., Ekman, F. K., Doudna, J. A., & Schaffer, D. V. (2017). Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Research, 45(11). https://doi.org/10.1093/NAR/GKX154

​Gonçalves, G. A. R., & Paiva, R. de M. A. (2017). Gene therapy: advances, challenges and perspectives. Einstein (São Paulo), 15(3), 369–375. https://doi.org/10.1590/S1679-45082017RB4024

​HIV. (n.d.). Retrieved November 11, 2022, from https://www.who.int/data/gho/data/themes/hiv-aids

​Ji, H., Lu, P., Liu, B., Qu, X., Wang, Y., Jiang, Z., Yang, X., Zhong, Y., Yang, H., Pan, H., Zhao, L., Xu, J., Lu, H., & Zhu, H. (2018). Zinc-Finger Nucleases Induced by HIV-1 Tat Excise HIV-1 from the Host Genome in Infected and Latently Infected Cells. Molecular Therapy. Nucleic Acids, 12, 67–74. https://doi.org/10.1016/J.OMTN.2018.04.014

​Khan, S., Ullah, M. W., Siddique, R., Nabi, G., Manan, S., Yousaf, M., & Hou, H. (2016). Role of recombinant DNA technology to improve life. International Journal of Genomics, 2016. https://doi.org/10.1155/2016/2405954

​Kong, W., Biswas, A., Zhou, D., Fiches, G., Fujinaga, K., Santoso, N., & Zhu, J. (2020). Nucleolar protein NOP2/NSUN1 suppresses HIV-1 transcription and promotes viral latency by competing with Tat for TAR binding and methylation. PLoS Pathogens, 16(3). https://doi.org/10.1371/JOURNAL.PPAT.1008430

​Kwarteng, A., Ahuno, S. T., & Kwakye-Nuako, G. (2017). The therapeutic landscape of HIV-1 via genome editing. AIDS Research and Therapy 2017 14:1, 14(1), 1–16. https://doi.org/10.1186/S12981-017-0157-8

​La OPS/OMS y ONUSIDA instan a poner fin a las desigualdades para eliminar el sida - OPS/OMS | Organización Panamericana de la Salud. (n.d.). Retrieved November 13, 2022, from https://www.paho.org/es/noticias/30-11-2021-opsoms-onusida-instan-poner-fin-desigualdades-para-eliminar-sida

​Liu, X., Wang, M., Qin, Y., Shi, X., Cong, P., Chen, Y., & He, Z. (2018). Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9. BMC Biotechnology, 18(1). https://doi.org/10.1186/S12896-018-0474-6

​Maeder, M. L., & Gersbach, C. A. (2016a). Genome-editing Technologies for Gene and Cell Therapy. Molecular Therapy, 24(3), 430–446. https://doi.org/10.1038/MT.2016.10

​Maeder, M. L., & Gersbach, C. A. (2016b). Genome-editing Technologies for Gene and Cell Therapy. Molecular Therapy : The Journal of the American Society of Gene Therapy, 24(3), 430–446. https://doi.org/10.1038/MT.2016.10

​Marin, B., Thiébaut, R., Bucher, H. C., Rondeau, V., Costagliola, D., Dorrucci, M., Hamouda, O., Prins, M., Walker, S., Porter, K., Sabin, C., & Chêne, G. (2009). Non-AIDS-defining deaths and immunodeficiency in the era of combination antiretroviral therapy. AIDS (London, England), 23(13), 1743–1753. https://doi.org/10.1097/QAD.0B013E32832E9B78

​Nerys-Junior, A., Braga-Dias, L. P., Pezzuto, P., Cotta-de-Almeida, V., & Tanuri, A. (2018). Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene. Genetics and Molecular Biology, 41(1), 167–179. https://doi.org/10.1590/1678-4685-GMB-2017-0065

​Nguyen, H., Wilson, H., Jayakumar, S., Kulkarni, V., & Kulkarni, S. (2021). Efficient Inhibition of HIV Using CRISPR/Cas13d Nuclease System. Viruses, 13(9). https://doi.org/10.3390/V13091850

​Rana, U., Driedger, M., Sereda, P., Pan, S., Ding, E., Wong, A., Walmsley, S., Klein, M., Kelly, D., Loutfy, M., Thomas, R., Sanche, S., Kroch, A., Machouf, N., Roy-Gagnon, M. H., Hogg, R., & Cooper, C. L. (2021). Clinical and demographic predictors of antiretroviral efficacy in HIV-HBV co-infected patients. Journal of the Association of Medical Microbiology and Infectious Disease Canada = Journal Officiel de l’Association Pour La Microbiologie Medicale et l’infectiologie Canada, 6(2), 137–148. https://doi.org/10.3138/JAMMI-2020-0011

​Rasmussen, T. A., Zerbato, J. M., Rhodes, A., Tumpach, C., Dantanarayana, A., McMahon, J. H., Lau, J. S. Y., Chang, J. J., Gubser, C., Brown, W., Hoh, R., Krone, M., Pascoe, R., Chiu, C. Y., Bramhall, M., Lee, H. J., Haque, A., Fromentin, R., Chomont, N., … Lewin, S. R. (2022). Memory CD4+ T cells that co-express PD1 and CTLA4 have reduced response to activating stimuli facilitating HIV latency. Cell Reports. Medicine, 3(10), 100766. https://doi.org/10.1016/J.XCRM.2022.100766

​R, K., Y, C., T, F., E, T., A, N., Y, Z., J, K., W, H., & K, K. (2016). Corrigendum: Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Scientific Reports, 6. https://doi.org/10.1038/SREP28213

​Ronsard, L., Yousif, A. S., Ramesh, J., Sumi, N., Gorman, M., Ramachandran, V. G., & Banerjea, A. C. (2019). In-Vitro Subtype-Specific Modulation of HIV-1 Trans-Activator of Transcription (Tat) on RNAi Silencing Suppressor Activity and Cell Death. Viruses, 11(11). https://doi.org/10.3390/V11110976

​Rosas, A., Hernández, P., & Nájar, I. (2013). Características estructurales y funcionales del Virus de la Inmunodeficiencia Humana. In Enfermedades Infecciosas y Microbiológicas (4th ed., Vol. 33, pp. 163–168). https://www.medigraphic.com/pdfs/micro/ei-2013/ei134f.pdf

​Rupp, L. J., Schumann, K., Roybal, K. T., Gate, R. E., Ye, C. J., Lim, W. A., & Marson, A. (2017). CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-00462-8

​Saez-Cirion, A., & Müller-Trutwin, M. (2019). The Yellow Brick Road towards HIV Eradication. Trends in Immunology, 40(6), 465–467. https://doi.org/10.1016/J.IT.2019.04.006

​Shao, Y., Xun, J., Chen, J., & Lu, H. (2022). Significance of initiating antiretroviral therapy in the early stage of HIV infection. Zhejiang Da Xue Xue Bao. Yi Xue Ban = Journal of Zhejiang University. Medical Sciences, 51(3), 373–379. https://doi.org/10.3724/ZDXBYXB-2022-0052

​Sheykhhasan, M., Foroutan, A., Manoochehri, H., Khoei, S. G., Poondla, N., & Saidijam, M. (2021). Could gene therapy cure HIV? Life Sciences, 277. https://doi.org/10.1016/J.LFS.2021.119451

​Shi, B., Li, J., Shi, X., Jia, W., Wen, Y., Hu, X., Zhuang, F., Xi, J., & Zhang, L. (2017). TALEN-Mediated Knockout of CCR5 Confers Protection Against Infection of Human Immunodeficiency Virus. Journal of Acquired Immune Deficiency Syndromes (1999), 74(2), 229–241. https://doi.org/10.1097/QAI.0000000000001190

​Soundararajan, D., Ramana, L. N., Shankaran, P., & Krishnan, U. M. (2022). Nanoparticle-based strategies to target HIV-infected cells. Colloids and Surfaces B: Biointerfaces, 213, 112405. https://doi.org/10.1016/J.COLSURFB.2022.112405

​Suryawanshi, G. W., Khamaikawin, W., Wen, J., Shimizu, S., Arokium, H., Xie, Y., Wang, E., Kim, S., Choi, H., Zhang, C., Yu, H., Presson, A. P., Kim, N., An, D. S., Chen, I. S. Y., & Kim, S. (2020). The clonal repopulation of HSPC gene modified with anti-HIV-1 RNAi is not affected by preexisting HIV-1 infection. Science Advances, 6(30). https://doi.org/10.1126/SCIADV.AAY9206

​VIH/SIDA - OPS/OMS | Organización Panamericana de la Salud. (n.d.). Retrieved December 7, 2022, from https://www.paho.org/es/temas/vihsida

​Wei, T., Cheng, Q., Min, Y. L., Olson, E. N., & Siegwart, D. J. (2020). Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nature Communications 2020 11:1, 11(1), 1–12. https://doi.org/10.1038/s41467-020-17029-3

​Wu, Y., Zeng, J., Roscoe, B. P., Liu, P., Yao, Q., Lazzarotto, C. R., Clement, K., Cole, M. A., Luk, K., Baricordi, C., Shen, A. H., Ren, C., Esrick, E. B., Manis, J. P., Dorfman, D. M., Williams, D. A., Biffi, A., Brugnara, C., Biasco, L., … Bauer, D. E. (2019). Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nature Medicine, 25(5), 776–783. https://doi.org/10.1038/S41591-019-0401-Y

​Xiao, Q., Guo, D., & Chen, S. (2019). Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Frontiers in Cellular and Infection Microbiology, 9(MAR), 69. https://doi.org/10.3389/FCIMB.2019.00069/BIBTEX

​Xu, L., Yang, H., Gao, Y., Chen, Z., Xie, L., Liu, Y., Liu, Y., Wang, X., Li, H., Lai, W., He, Y., Yao, A., Ma, L., Shao, Y., Zhang, B., Wang, C., Chen, H., & Deng, H. (2017). CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Molecular Therapy : The Journal of the American Society of Gene Therapy, 25(8), 1782–1789. https://doi.org/10.1016/J.YMTHE.2017.04.027

​Xun, J., Zhang, X., Guo, S., Lu, H., & Chen, J. (2021). Editing out HIV: application of gene editing technology to achieve functional cure. Retrovirology, 18(1), 1–11. https://doi.org/10.1186/S12977-021-00581-1/TABLES/3

​Yin, C., Zhang, T., Qu, X., Zhang, Y., Putatunda, R., Xiao, X., Li, F., Xiao, W., Zhao, H., Dai, S., Qin, X., Mo, X., Young, W. Bin, Khalili, K., & Hu, W. (2017). In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. Molecular Therapy : The Journal of the American Society of Gene Therapy, 25(5), 1168–1186. https://doi.org/10.1016/J.YMTHE.2017.03.012

​Yin, H., Song, C. Q., Suresh, S., Wu, Q., Walsh, S., Rhym, L. H., Mintzer, E., Bolukbasi, M. F., Zhu, L. J., Kauffman, K., Mou, H., Oberholzer, A., Ding, J., Kwan, S. Y., Bogorad, R. L., Zatsepin, T., Koteliansky, V., Wolfe, S. A., Xue, W., … Anderson, D. G. (2017). Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nature Biotechnology, 35(12), 1179–1187. https://doi.org/10.1038/NBT.4005

​Zhou, G., Li, X., Qiao, S., Shen, Z., & Zhou, Y. (2017). Influence of Side Effects on ART Adherence Among PLWH in China: The Moderator Role of ART-Related Knowledge. AIDS and Behavior 2017 22:3, 22(3), 961–970. https://doi.org/10.1007/S10461-017-1791-9

​Zhou, J., Lazar, D., Li, H., Xia, X., Satheesan, S., Charlins, P., O’Mealy, D., Akkina, R., Saayman, S., Weinberg, M. S., Rossi, J. J., & Morris, K. V. (2018). Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1. Theranostics, 8(6), 1575–1590. https://doi.org/10.7150/THNO.23085