A System for the Detection of Pests in Crops

Main Article Content

Oscar Alexander López-Gorozabel
Ricardo Orlando Malla-Valdiviezo
Gabriel Eduardo Morejón-López
Miguel Ángel León-Bravo

Abstract

The present investigation proposes the construction of a web application destined to the detection of pests, in its first phase the detection of the whitefly plague has been proposed, one of the most recurrent in the Manabí crops, mainly affecting the cultivation of plants such as tomato, pepper, cabbage and cucurbits such as pumpkin, cucumber and leafy vegetables such as lettuce or parsley. This project seeks to become a crop monitoring agent, acting automatically and effectively in the detection of pests through image processing, for which various algorithms supported by the ImageAI library were developed, with which it was possible to create, train and test a detection model. Regarding the operation of the web application, the user will be able to create an account and once logged in will be able to access the capture module, where they will be able to take or upload a photo for their respective analysis. 


This research is based on the bibliographic and analytical method, in addition the information is from reliable sources, such as: IEEE, Dialnet, ACM, Google Scholar, Institutional Repositories. For the development of the web application, the Python programming language was used for the Backend and technologies such as HTML, W3Css and JavaScript for the Frontend. Subsequently, MySQL was used to create the database. 


The framework used for the development of the application was Scrum, due to the versatility of its methodology. Finally, as a result of this project, the first version of functional software is obtained, with aspirations to improve in future versions. 

Downloads

Download data is not yet available.

Article Details

How to Cite
López-Gorozabel, O. ., Malla-Valdiviezo , R. ., Morejón-López , G. ., & León-Bravo , M. . (2024). A System for the Detection of Pests in Crops . 593 Digital Publisher CEIT, 9(1), 128-137. https://doi.org/10.33386/593dp.2024.1.1898
Section
Investigaciones /estudios empíricos
Author Biographies

Oscar Alexander López-Gorozabel, Universidad Técnica de Manabí - Ecuador

http://orcid.org/0000-0002-0640-9953

Computer Systems Engineer and Bachelor's Degree in Social Work from the Technical University of Manabí. 

Master's Degree in Software Engineering and Computer Systems from UNIR. 

Professor of Software Engineering at the Technical University of Manabí. Researcher and reviewer of academic articles. 

Ricardo Orlando Malla-Valdiviezo , Universidad Técnica De Manabí - Ecuador

https://orcid.org/0000-0003-0841-7495

Master in Business Informatics UNIANDES, Computer Systems Engineer Universidad Técnica de Manabí, Teacher Universidad Técnica de Manabí, Ex - Zonal Coordinator of ICT MSP - Zone 4, Ex - Coordinator of Institutional Goals and Educational Advisor MINEDUC Zone 4, Sub Secretary of intergenerational attention MIES. 

Gabriel Eduardo Morejón-López , Universidad Técnica de Manabí - Ecuador

https://orcid.org/0000-0001-8902-4583

Experience in software development, telecommunications, AI, publications on LiFi systems, Network Monitoring Systems, Data Analysis and Image Labeling with AI models. 

Miguel Ángel León-Bravo , Universidad Técnica de Manabí - Ecuador

http://orcid.org/0000-0002-3435-2560

Computer Systems Engineer, Master in Educational Technology. Experience in second and third level teaching, supervision and oversight of the operational area in telecommunications companies. 

References

Andrade, J. (2018). Aplicación móvil para la detección y tratamiento de daños de los cultivos de la parroquia Taura del cantón Durán, mediante el uso de software de análisis de imagen basado en técnicas de Machine Learning. http://201.159.223.180/bitstream/3317/11769/1/T-UCSG-PRE-ART-IPM-150.pdf

De Martí, S. P. (2018). AGRICULTURA DE PRECISIÓN y PROTECCIÓN DE CULTIVOS. Revista de ingeniería, 47, 10-19. https://doi.org/10.16924/revinge.47.3

Flores, A. (2021). Lista de las mejores librerías de Python para el 2022. crehana.com. https://www.crehana.com/ec/blog/desarrollo-web/librerias-python/

Fuentes, M., & Medina, W. (2021). Diseño de un modelo predictivo-asistencial de pacientes infectados por Covid-19, mediante un modelo supervisado de Machine Learning basado en criterios de derivación hospitalaria o ambulatoria. Repositorio Universidad de Guayaquil. http://repositorio.ug.edu.ec/bitstream/redug/52650/1/B-CISC-PTG-1901-2021%20Fuentes%20Marmolejo%20Melina%20Daniela%20-%20Medina%20Parra%20Wilmer%20David.pdf

Landau, E. C., Guimaraes, D., & Hirsch, A. (2014). Uso de sistema de informaciones geográficas para espacialización de datos del área de producción agrícola. ResearchGate. https://www.researchgate.net/publication/280098376_Uso_de_Sistema_de_Informaciones_Geograficas_para_espacializacion_de_datos_del_area_de_produccion_agricola

Llamas, L., & Sulé, M. (2021). Tecnología en la agricultura. Innovación como método de evolución agrícola. Universidad de León. https://buleria.unileon.es/handle/10612/13619

Magaña, J. B. (2015). DETECCIÓN DE OBJETOS EN IMÁGENES UTILIZANDO OPENCV PARA RASPBERRY. ResearchGate. https://www.researchgate.net/publication/316282519_DETECCION_DE_OBJETOS_EN_IMAGENES_UTILIZANDO_OPENCV_PARA_RASPBERRY

Maniyath, S. R., Vinod, P., M, N., R, P., N, P. B., N, S., & Hebbar, R. (2018). Plant Disease Detection Using Machine Learning. International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), 41-45. https://doi.org/10.1109/icdi3c.2018.00017

Marín, R. (2020). ¿Qué es OpenCV? Instalación en Python y ejemplos básicos. Canal Informática y TICS. https://revistadigital.inesem.es/informatica-y-tics/opencv

Nuñez, O., Figueroa, T., & De Jesús, A. (2015). Monitorización de cultivos utilizando drones. Docplayer.es. https://docplayer.es/13303546-Monitorizacion-de-cultivos-utilizando-drones-clave-del-proyecto-cin2015a20121.html

Olafenwa, M. (2022). ImageAI: A Python library built to empower developers to build applications and systems with self-contained computer vision capabilities [Software]. En GitHub (2.1.6). https://github.com/OlafenwaMoses/ImageAI

Otálora, P., Sánchez, J., Fernández, F., & Soria, M. B. (2021). Herramienta gráfica para la caracterización de cultivos de microalgas basada en redes neuronales artificiales. En Servizo de Publicacións da UDC eBooks (pp. 119-125). https://doi.org/10.17979/spudc.9788497498043.119

Pusiol, P. (2014). Redes Convolucionales en Comprensión de Escenas. Repositorio Digital de la Universidad Nacional de Córdoba (RDU). https://rdu.unc.edu.ar/bitstream/handle/11086/2799/TE%20C%20Pusiol.pdf?sequence=1&isAllowed=y

Rojas, M. (2020). Machine Learning: Análisis de lenguajes de Programación y herramientas para desarrollo- ProQuest. Proquest.com. https://www.proquest.com/docview/2388304894?pq-origsite=gscholar&fromopenview=true

Shruthi, U., Nagaveni, V., & Raghavendra, B. K. (2019). A Review on Machine Learning Classification Techniques for Plant Disease Detection. 5th International Conference on Advanced Computing & Communication Systems, (ICACCS), 281-284. https://doi.org/10.1109/icaccs.2019.8728415

Sierra, J. (2022). Introducción a las redes neuronales artificiales. Repositorio Docta de la Universidad Complutense de Madrid. https://hdl.handle.net/20.500.14352/3133

Sotomayor, J. F., Gómez, A. P., & Cela, A. F. (2014). Sistema de Visión Artificial para el Análisis de Imágenes de Cultivo basado en Texturas Orientadas. Revista Politécnica, 33(1). https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/104

Sucar, L., & Gómez, G. (2017). Visión computacional. Instituto Nacional de Astrofísica, Óptica y Electrónica. México. https://ccc.inaoep.mx/~esucar/Libros/vision-sucar-gomez.pdf

Taquía-Gutiérrez, J. A. (2017). El procesamiento de imágenes y su potencial aplicación en empresas con estrategia digital. Interfases. https://doi.org/10.26439/interfases2017.n10.1767

Tanner, G. (2019). Introduction to Deep Learning with Keras. How to use the Keras Deep Learning library. https://towardsdatascience.com/introduction-to-deep-learning-with-keras-17c09e4f0eb2

Turned, T. (2017). What is TensorFlow? https://medium.com/@deshayk/what-is-tensorflow-66ef027e5c6d

Ultralytics. (2022). GitHub - Ultralytics/yolov3: YOLOV3 in PyTorch; ONNX; CoreML; TFLite. GitHub. https://github.com/ultralytics/yolov3