Communication systems in natural disaster environments: systematic review of the literature (SLR)

Main Article Content

David Fernando Zambrano-Montenegro
Marcos Anthony Avellán-Vera

Abstract

Currently, communication systems play a fundamental role in the dissemination of information about natural disasters. This article presents a systematic literature review (SLR) on the use of communication systems as a basis for applying different emergency response scenarios of natural catastrophes. In addition, it aims to exhaustively analyze the existing literature on communication systems used in natural disaster environments. The first part focuses on the sources of information; then the investigations that use techniques in communication systems are described. Finally, the results obtained can be used to make decisions on the optimal management of resources according to the catastrophic event. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Zambrano-Montenegro, D. ., & Avellán-Vera, M. . (2023). Communication systems in natural disaster environments: systematic review of the literature (SLR) . 593 Digital Publisher CEIT, 8(3-1), 665-678. https://doi.org/10.33386/593dp.2023.3-1.1834
Section
Administration
Author Biographies

David Fernando Zambrano-Montenegro, Universidad Técnica de Manabí - Ecuador

https://orcid.org/0000-0002-8833-1546

Dedicated teacher with the ability to apply his knowledge and skills on issues related to Information and Communication Technologies. Skills to facilitate dialogue, supervise field work and prepare high-quality classes. Expert in Research project management, curricular content development, classroom management and participation strategies.

Marcos Anthony Avellán-Vera, Universidad Técnica de Manabí - Ecuador

https://orcid.org/0009-0008-5666-9981

I am 27 years old, currently graduated from the computer systems engineering career at the Technical University of Manabí, I work as a teacher - instructor in the provincial union of drivers of Manabí.

References

Alkhatib, M., El Barachi, M., & Shaalan, K. (2019). An Arabic social media based framework for incidents and events monitoring in smart cities. Journal of Cleaner Production, 220, 771-785. https://doi.org/10.1016/j.jclepro.2019.02.063

Alsaedi, N., & Burnap, P. (2015). Arabic Event Detection in Social Media. En A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (Vol. 9041, pp. 384-401). Springer International Publishing. https://doi.org/10.1007/978-3-319-18111-0_29

Bakillah, M., Li, R.-Y., & Liang, S. H. L. (2015). Geo-located community detection in Twitter with enhanced fast-greedy optimization of modularity: The case study of typhoon Haiyan. International Journal of Geographical Information Science, 29(2), 258-279. https://doi.org/10.1080/13658816.2014.964247

Basnyat, B., Anam, A., Singh, N., Gangopadhyay, A., & Roy, N. (2017). Analyzing Social Media Texts and Images to Assess the Impact of Flash Floods in Cities. 2017 IEEE International Conference on Smart Computing (SMARTCOMP), 1-6. https://doi.org/10.1109/SMARTCOMP.2017.7946987

Bernabé, Correón, Cerca, Culqui, González, Gutiérrez, Herrera, & Padilla. (2015). Gestión de Riesgo en el Ecuador. 1, 1-217. https://doi.org/10.13140/RG.2.1.4092.5845

Budgaga, W., Malensek, M., Lee Pallickara, S., & Pallickara, S. (2017). A framework for scalable real-time anomaly detection over voluminous, geospatial data streams: Scalable Anomaly Detection over Voluminous Geospatial Data Streams. Concurrency and Computation: Practice and Experience, 29(12), e4106. https://doi.org/10.1002/cpe.4106

Cerutti, V., Bellman, C., Both, A., Duckham, M., Jenny, B., Lemmens, R. L. G., & Ostermann, F. O. (2021). Improving the reproducibility of geospatial scientific workflows: The use of geosocial media in facilitating disaster response. Journal of Spatial Science, 66(3), 383-400. https://doi.org/10.1080/14498596.2019.1654944

Demoraes. (2003). Amenazas, vulnerabilidad, capacidades y riesgo en el Ecuador: Los desastres, un reto para el desarrollo. http://biblioteca.uazuay.edu.ec/opac_css/index.php?lvl=notice_display&id=54459

Dorasamy, M., Raman, M., & Kaliannan, M. (2017). Integrated community emergency management and awareness system: A knowledge management system for disaster support. Technological Forecasting and Social Change, 121, 139-167. https://doi.org/10.1016/j.techfore.2017.03.017

Goswami, A., & Kumar, A. (2016). A survey of event detection techniques in online social networks. Social Network Analysis and Mining, 6(1), 107. https://doi.org/10.1007/s13278-016-0414-1

Grekousis, G., & Liu, Y. (2019). Where will the next emergency event occur? Predicting ambulance demand in emergency medical services using artificial intelligence. Computers, Environment and Urban Systems, 76, 110-122. https://doi.org/10.1016/j.compenvurbsys.2019.04.006

Habdank, M., Rodehutskors, N., & Koch, R. (2017). Relevancy assessment of tweets using supervised learning techniques: Mining emergency related tweets for automated relevancy classification. 2017 4th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), 1-8. https://doi.org/10.1109/ICT-DM.2017.8275670

Higashino, T. (2017). Edge Computing for Cooperative Real-Time Controls Using Geospatial Big Data. En C.-M. Kyung, H. Yasuura, Y. Liu, & Y.-L. Lin (Eds.), Smart Sensors and Systems (pp. 441-466). Springer International Publishing. https://doi.org/10.1007/978-3-319-33201-7_16

Kim, J., Bae, J., & Hastak, M. (2018). Emergency information diffusion on online social media during storm Cindy in U.S. International Journal of Information Management, 40, 153-165. https://doi.org/10.1016/j.ijinfomgt.2018.02.003

Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Van Hentenryck, P., Fowler, J., & Cebrian, M. (2016). Rapid assessment of disaster damage using social media activity. Science Advances, 2(3), e1500779. https://doi.org/10.1126/sciadv.1500779

Lao Li, & Takakuwa. (2017). Análisis de confiabilidad y validez de un instrumento de medición de la sociedad del conocimiento y su dependencia en las tecnologías de la información y comunicación. 2, 74.

Li, J., He, Z., Plaza, J., Li, S., Chen, J., Wu, H., Wang, Y., & Liu, Y. (2017). Social Media: New Perspectives to Improve Remote Sensing for Emergency Response. Proceedings of the IEEE, 105(10), 1900-1912. https://doi.org/10.1109/JPROC.2017.2684460

Lopes, I. M., Guarda, T., & Oliveira, P. (2019). How ISO 27001 Can Help Achieve GDPR Compliance. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 1-6. https://doi.org/10.23919/CISTI.2019.8760937

Louati, A., Louati, H., & Li, Z. (2021). Deep learning and case-based reasoning for predictive and adaptive traffic emergency management. The Journal of Supercomputing, 77(5), 4389-4418. https://doi.org/10.1007/s11227-020-03435-3

Ma, X., & Fan, X. (2022). A review of the studies on social media images from the perspective of information interaction. Data and Information Management, 6(1), 100004. https://doi.org/10.1016/j.dim.2022.100004

María, Gómez, Roque, Blanca, & Garcés. (2015). El proceso de comunicación mediado por las tecnologías de la información. Ventajas y desventajas en diferentes esferas de la vida social. 13(4), 481-493.

Ministerio de Ciencia, Tecnología y Medio Ambiente. (2013). La comunicación en tiempos de riesgos y de cambio climático. 53(9), 1689-1699. https://doi.org/10.1017/CBO9781107415324.004

Organización de las Naciones Unidas para la Alimentación y la Agricultura (Ed.). (2016). En tierra segura. Desastres naturales y tendencia de la tierra. http://www.fao.org/3/i1255b/i1255b02.pdf

Organización Panamericana de la Salud (Ed.). (2019). Centro en connocimientos en salud publica y desastres. http://saludydesastres.info/index.php?option=com_content&view=category&layout= blog&id=126&lang=es

Parraga-Alava, J., Alcivar-Cevallos, R., Vaca-Cardenas, L., & Meza, J. (2021). UrbangEnCy: An emergency events dataset based on citizen sensors for monitoring urban scenarios in Ecuador. Data in Brief, 34, 106693. https://doi.org/10.1016/j.dib.2020.106693

Porter, & Schwab. (2008). The Global Competitiveness Report 2008-2009.

Ravikumar, K., & RajivKannan, A. (2020). An enhancement of location estimation and disaster event prediction using density based SPATIO-temporal clustering with GPS. Multimedia Tools and Applications, 79(5-6), 3929-3941. https://doi.org/10.1007/s11042-019-7583-7

Robles, P., Tello, A., Zúñiga-Prieto, M., & Solano-Quinde, L. (2019). Modeling 911 Emergency Events in Cuenca-Ecuador Using Geo-Spatial Data. En M. Botto-Tobar, G. Pizarro, M. Zúñiga-Prieto, M. D’Armas, & M. Zúñiga Sánchez (Eds.), Technology Trends (Vol. 895, pp. 564-577). Springer International Publishing. https://doi.org/10.1007/978-3-030-05532-5_43

Scarpone, C., Brinkmann, S. T., Große, T., Sonnenwald, D., Fuchs, M., & Walker, B. B. (2020). A multimethod approach for county-scale geospatial analysis of emerging infectious diseases: A cross-sectional case study of COVID-19 incidence in Germany. International Journal of Health Geographics, 19(1), 32. https://doi.org/10.1186/s12942-020-00225-1

Scheuren, le Polain, Below, Guha-Sapir, & Ponserre. (2008). Annual disaster statistical review: Numbers and trends 2007. Centre for Research on the Epidemiology of Disasters (CRED, United Nations International Strategy for Disaster Reduction Secretariat.

Si, M., Cui, L., Guo, W., Li, Q., Liu, L., Lu, X., & Lu, X. (2020). A comparative analysis for spatio-temporal spreading patterns of emergency news. Scientific Reports, 10(1), 19472. https://doi.org/10.1038/s41598-020-76162-7

SNGR. (2016). Informe de situación No. 1 (16/04/2016) 22h30 Terremoto 7.8 ° Muisne (N.o 3; pp. 4-7). http://www.gestionderiesgos.gob.ec/wp- content/uploads/downloads/2016/04/Informe-de-Situación-1-22h303.pdf

Varshney, D., & Vishwakarma, D. K. (2021). Hoax news-inspector: A real-time prediction of fake news using content resemblance over web search results for authenticating the credibility of news articles. Journal of Ambient Intelligence and Humanized Computing, 12(9), 8961-8974. https://doi.org/10.1007/s12652-020-02698-1

Voigt, S., Giulio-Tonolo, F., Lyons, J., Kučera, J., Jones, B., Schneiderhan, T., Platzeck, G., Kaku, K., Hazarika, M. K., Czaran, L., Li, S., Pedersen, W., James, G. K., Proy, C., Muthike, D. M., Bequignon, J., & Guha-Sapir, D. (2016). Global trends in satellite-based emergency mapping. Science, 353(6296), 247-252. https://doi.org/10.1126/science.aad8728

Wu, X., Cao, Y., Xiao, Y., & Guo, J. (2020). Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics. Annals of Operations Research, 290(1-2), 865-896. https://doi.org/10.1007/s10479-018-2904-1

Zhang, P., Deng, Q., Liu, X., Yang, R., & Zhang, H. (2017). Emergency-Oriented Spatiotemporal Trajectory Pattern Recognition by Intelligent Sensor Devices. IEEE Access, 5, 3687-3697. https://doi.org/10.1109/ACCESS.2017.2678471

Zhang, Y., Wu, W., Wang, Q., & Su, F. (2017). A Geo-Event-Based Geospatial Information Service: A Case Study of Typhoon Hazard. Sustainability, 9(4), 534. https://doi.org/10.3390/su9040534