Análisis de la fiabilidad de una máquina de serigrafía semiautomática, utilizando métodos de distribución de probabilidad continua
Contenido principal del artículo
Resumen
La investigación se fundamenta en el estudio de la probabilidad con la que un equipo funciona de manera adecuada en un determinado periodo bajo condiciones operativas específicas, el análisis de fiabilidad realizado en una maquina serigráfica semiautomática, permite verificar la disponibilidad del equipo en la ejecución de trabajos inherentes a la misma y por ende optimizar el mecanismo y ofrecer productos que cumplan con los requerimientos del mercado, para ello debemos conocer los tiempos correctos en los cuales se va a realizar mantenimiento preventivo, este estudio se realizó por medio de la aplicación de la distribución de Weibull y exponencial con las que se pudo determinar que el valor de la fiabilidad para las dos distribuciones es muy similar con un aproximado del 65%. También se pudo determinar que la fiabilidad de un elemento va a disminuir en función del tiempo debido al desgaste que este va a presentar por el uso constante de los elementos constitutivos de la máquina. Por otra parte, de acuerdo con los análisis realizados se determina que la maquina tiene una disponibilidad del 97,75%, para efectuar los trabajos encomendados a la serigrafía. Finalmente se realiza un programa de mantenimiento para cada elemento y así poder incrementar la vida útil del mismo.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. Derechos de autor
Las obras que se publican en 593 Digital Publisher CEIT están sujetas a los siguientes términos:
1.1. 593 Digital Publisher CEIT, conserva los derechos patrimoniales (copyright) de las obras publicadas, favorece y permite la reutilización de las mismas bajo la licencia Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0, por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
1.1.a. Se cite la autoría y fuente original de su publicación (revista, editorial, URL).
1.1.b. No se usen para fines comerciales u onerosos.
1.1.c. Se mencione la existencia y especificaciones de esta licencia de uso.
Citas
Parra Márquez, C. A., & Crespo Márquez, A. (2012). Ingeniería de mantenimiento y fiabilidad aplicada en gestión de activos: desarrollo y aplicación práctica de un modelo de gestión del mantenimiento (MGM). Ingeman.
Creus Solé, A. (2005). Fiabilidad y seguridad: su aplicación en procesos industriales. Marcombo.
Sols, A. (2000). Fiabilidad, mantenibilidad, efectividad: un enfoque sistemático. Universidad Pontificia Comillas.
Prat Planas, M. (2009). Capacidad De Mantenimiento Y Seguridad De Una Impresora Industrial Digital., 4. Retrieved from https://upcommons.upc.edu/
Creus Solé, A. (1992). Fiabilidad y seguridad: su aplicación en procesos industriales. Marcombo. Retrieved from https://books.google.com.ec/books?id=mR0dOgAACAAJ&dq=Fiabilidad+y+seguridad:+su+aplicación+en+procesos+industriales&hl=es&sa=X&ved=0ahUKEwiTnemGxqnjAhUCwFkKHcgoBooQ6AEIJzAA
Martínez Laura. (2011). Métodos De Inferencia Para La Distribución Weibull: Aplicación En Fiabilidad Industrial, 68. Retrieved from http://eio.usc.es/pub/mte/descargas/proyectosfinmaster/proyecto_613.pdf
Creus Solé, A. (1991). Fiabilidad y seguridad de procesos industriales. Barcelona: Marcombo.
Lin, P. T., Gea, H. C., & Xu, L. (2011). Reliability-based design optimization of electrothermal microactuators using Hybrid Reliability Approach. In 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011 (pp. 2529–2534). https://doi.org/10.1109/ROBIO.2011.6181685
Gupta, R. D., & Kundu, D. (2001). Exponentiated exponential family: An alternative to gamma and Weibull distributions. Biometrical Journal, 43(1), 117–130. https://doi.org/10.1002/1521-4036(200102)43:1<117:AID-BIMJ117>3.0.CO;2-R
Dey, S., & Dey, T. (2014). Generalized inverted exponential distribution: Different methods of estimation. American Journal of Mathematical and Management Sciences, 33(3), 194–215. https://doi.org/10.1080/01966324.2014.927338
Barakat, H. M. (2015). A new method for adding two parameters to a family of distributions with application to the normal and exponential families. Statistical Methods and Applications, 24(3), 359–372. https://doi.org/10.1007/s10260-014-0265-8
Bhattacharya, P., & Bhattacharjee, R. (2010). A Study on Weibull Distribution for Estimating the Parameters. Wind Engineering, 33(5), 469–476. https://doi.org/10.1260/030952409790291163
Kundu, D., & Gupta, R. D. (2008). Generalized exponential distribution: Bayesian estimations. Computational Statistics and Data Analysis, 52(4), 1873–1883. https://doi.org/10.1016/j.csda.2007.06.004
Barabadi, A. (2013). Reliability model selection and validation using Weibull probability plot - A case study. Electric Power Systems Research, 101, 96–101. https://doi.org/10.1016/j.epsr.2013.03.010
Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data. IEEE Transactions on Reliability, 42(2), 299–302. https://doi.org/10.1109/24.229504
Wu, Y.-T. (1994). Computational methods for efficient structural reliability and reliability sensitivity analysis. AIAA Journal, 32(8), 1717–1723. https://doi.org/10.2514/3.12164
Youn, B. D., Choi, K. K., & Park, Y. H. (2003). Hybrid Analysis Method for Reliability-Based Design Optimization. Journal of Mechanical Design, 125(2), 221. https://doi.org/10.1115/1.1561042
Crow, L. H. (1982). Confidence interval procedures for the weibull process with applications to reliability growth. Technometrics, 24(1), 67–72. https://doi.org/10.1080/00401706.1982.10487711
Bebbington, M., Lai, C. D., & Zitikis, R. (2007). A flexible Weibull extension. Reliability Engineering and System Safety, 92(6), 719–726. https://doi.org/10.1016/j.ress.2006.03.004
Murthy, D. N. P., Bulmer, M., & Eccleston, J. A. (2004). Weibull model selection for reliability modelling. Reliability Engineering and System Safety, 86(3), 257–267. https://doi.org/10.1016/j.ress.2004.01.014
Basu, A. P. (1964). Estimates of Reliability for Some Distributions Useful in Life Testing. Technometrics, 6(2), 215–219. https://doi.org/10.1080/00401706.1964.10490165
Marshall, A. (2004). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84(3), 641–652. https://doi.org/10.1093/biomet/84.3.641
Taylor, P., Abouammoh, A. M., & Alshingiti, A. M. (2009). Journal of Statistical Computation and Reliability estimation of generalized inverted exponential distribution Reliability estimation of generalized inverted exponential distribution, (September 2012), 37–41.
Gupta, R. D., & Kundu, D. (2001). Generalized exponential distribution: Different method of estimations. Journal of Statistical Computation and Simulation, 69(4), 315–337. https://doi.org/10.1080/00949650108812098
Zhang, T., & Xie, M. (2011). On the upper truncated Weibull distribution and its reliability implications. Reliability Engineering and System Safety, 96(1), 194–200. https://doi.org/10.1016/j.ress.2010.09.004
Bučar, T., Nagode, M., & Fajdiga, M. (2004). Reliability approximation using finite Weibull mixture distributions. Reliability Engineering and System Safety, 84(3), 241–251. https://doi.org/10.1016/j.ress.2003.11.008
Basu, A. P., Marshall, A., Gupta, R. D., Kundu, D., Taylor, P., Abouammoh, A. M., … Evans, R. A. (2004). Generalized exponential distribution: Different method of estimations. Technometrics, 25(4), 315–337. https://doi.org/10.1080/00401706.1964.10490165
Evans, R. A. (2006). [Statistical Methods in Reliability]: Discussion. Technometrics, 25(4), 333. https://doi.org/10.2307/1267853
Kao, J. H. K. (1958). Computer methods for estimating weibull parameters in reliability studies. IRE Transactions on Reliability and Quality Control, PGRQC-13, 15–22. https://doi.org/10.1109/IRE-PGRQC.1958.5007164
Choi, S.-K., Grandhi, R. V., & Canfield, R. A. (2007). Reliability-based structural design. Springer.
Ma, J., & Del Pino, T. (1991). NTP 316: Fiabilidad de componentes: la distribución exponencial, 8. Retrieved from http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/301a400/ntp_316.pdf